File size: 1,594 Bytes
11c7953 178f86d 11c7953 178f86d 11c7953 178f86d 11c7953 178f86d 11c7953 178f86d 11c7953 178f86d 11c7953 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("cognitivecomputations/Dolphin3.0-Mistral-24B")
model = AutoModelForCausalLM.from_pretrained("cognitivecomputations/Dolphin3.0-Mistral-24B", torch_dtype=torch.float16).cuda()
# FastAPI app
app = FastAPI()
# Request Body
class InputText(BaseModel):
prompt: str
max_length: int = 100
@app.post("/generate")
async def generate_text(input_data: InputText):
inputs = tokenizer(input_data.prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, max_length=input_data.max_length)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return {"response": generated_text}
# Run the server using: uvicorn app:app --host 0.0.0.0 --port 8000
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|