File size: 3,753 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
5df72d6
9b5b26a
07dd4a2
e1ca61b
 
 
19e94f0
9b5b26a
aba1457
 
74e4251
29d8b63
19e94f0
 
74e4251
 
19e94f0
74e4251
e1ca61b
74e4251
 
 
19e94f0
74e4251
 
19e94f0
74e4251
19e94f0
74e4251
 
 
 
 
 
 
 
19e94f0
74e4251
19e94f0
 
 
 
 
74e4251
19e94f0
 
 
 
 
 
e1ca61b
74e4251
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
5174686
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
74e4251
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def scrape_wiki_fifa_winners(year: int, cat: str) -> str:
    """
    This tool is used to obtain information regarding FIFA World Cup winners 
    for the male and female soccer competitions.

    Args:
        year: An integer representing the year of the World Cip.
        cat: A string representing The competition category, either "Men" or "Women".

    
    """
    
    import requests
    from bs4 import BeautifulSoup

    def get_fifa_winners():
        """Scrapes Wikipedia for FIFA World Cup winners and returns a dictionary."""
        url = "https://en.wikipedia.org/wiki/List_of_FIFA_World_Cup_finals"
        response = requests.get(url)
        soup = BeautifulSoup(response.text, 'html.parser')

        winners = {}
        tables = soup.find_all("table", {"class": "wikitable"})

        categories = ["Men", "Women"]

        for idx, table in enumerate(tables[:2]):  # First two tables (Men's and Women's WC)
            rows = table.find_all("tr")[1:]  # Skip header row
            for row in rows:
                cols = row.find_all("td")
                if len(cols) >= 2:
                    year = cols[0].text.strip()
                    winner = cols[1].text.strip()
                    winners.setdefault(categories[idx], {})[year] = winner

        return winners

    if arg2 not in ["Men", "Women"]:
        return "Error: Invalid category. Choose either 'Men' or 'Women'."

    fifa_winners = get_fifa_winners()
    
    year_str = str(arg1)  # Convert year to string since dictionary keys are strings
    if year_str not in fifa_winners[arg2]:
        return f"Error: No data available for the year {arg1} in the {arg2} category."

    return f"The winner of the {arg2} World Cup in {arg1} was {fifa_winners[arg2][year_str]}."


            

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer,scrape_wiki_fifa_winners, get_current_time_in_timezone], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()