import gradio as gr import torch import torch.nn as nn import torchvision.models as models import torchvision.transforms as transforms from PIL import Image from huggingface_hub import hf_hub_download import json ######################################## # 1. Define the Model Architecture ######################################## class MultiTaskModel(nn.Module): def __init__(self, backbone, feature_dim, num_obj_classes): super(MultiTaskModel, self).__init__() self.backbone = backbone self.obj_head = nn.Linear(feature_dim, num_obj_classes) self.bin_head = nn.Linear(feature_dim, 2) def forward(self, x): feats = self.backbone(x) obj_logits = self.obj_head(feats) bin_logits = self.bin_head(feats) return obj_logits, bin_logits ######################################## # 2. Reconstruct the Model and Load Weights ######################################## num_obj_classes = 494 # Make sure this matches your training device = torch.device("cpu") resnet = models.resnet50(pretrained=False) resnet.fc = nn.Identity() feature_dim = 2048 model = MultiTaskModel(resnet, feature_dim, num_obj_classes) model.to(device) repo_id = "Abdu07/multitask-model" filename = "Yolloplusclassproject_weights.pth" weights_path = hf_hub_download(repo_id=repo_id, filename=filename) state_dict = torch.load(weights_path, map_location="cpu") model.load_state_dict(state_dict) model.eval() ######################################## # 3. Load Label Mapping and Define Transforms ######################################## # Load the saved mapping from JSON with open("obj_label_mapping.json", "r") as f: obj_label_to_idx = json.load(f) # Create the inverse mapping idx_to_obj_label = {v: k for k, v in obj_label_to_idx.items()} bin_label_names = ["AI-Generated", "Real"] val_transforms = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) ######################################## # 4. Define the Inference Function ######################################## def predict_image(img: Image.Image) -> str: img = img.convert("RGB") img_tensor = val_transforms(img).unsqueeze(0).to(device) with torch.no_grad(): obj_logits, bin_logits = model(img_tensor) obj_pred = torch.argmax(obj_logits, dim=1).item() bin_pred = torch.argmax(bin_logits, dim=1).item() obj_name = idx_to_obj_label.get(obj_pred, "Unknown") bin_name = bin_label_names[bin_pred] return f"Prediction: {obj_name} ({bin_name})" ######################################## # 5. Create Gradio UI ######################################## demo = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), outputs="text", title="DualSight: Multi-Task Image Classifier for Content Verification Trained by Abdellahi El Moustapha", description="Upload an image to receive two predictions:\n1) The primary object in the image,\n2) Whether the image is AI-generated or Real." ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", share=True)