ShortsGenerator / app.py
AZILS's picture
Update app.py
147010d verified
import os
import re
import json
import time
import random
import tempfile
import requests
import numpy as np
from PIL import Image
from io import BytesIO
from datetime import datetime
import gradio as gr
from dotenv import load_dotenv
import moviepy.editor as mpy
from moviepy.editor import *
from moviepy.audio.fx.all import volumex
from moviepy.video.fx.all import crop
# Load environment variables from .env file if present
load_dotenv()
# Constants
CACHE_DIR = os.path.join(tempfile.gettempdir(), "yt_shorts_generator")
ASSETS_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
MUSIC_DIR = os.path.join(ASSETS_DIR, "background_music")
FONTS_DIR = os.path.join(ASSETS_DIR, "fonts")
# Create necessary directories
os.makedirs(CACHE_DIR, exist_ok=True)
os.makedirs(MUSIC_DIR, exist_ok=True)
os.makedirs(FONTS_DIR, exist_ok=True)
# Helper functions for logging
def info(message):
timestamp = datetime.now().strftime("%H:%M:%S")
formatted_message = f"[{timestamp}] [INFO] {message}"
print(formatted_message)
return formatted_message
def success(message):
timestamp = datetime.now().strftime("%H:%M:%S")
formatted_message = f"[{timestamp}] [SUCCESS] {message}"
print(formatted_message)
return formatted_message
def warning(message):
timestamp = datetime.now().strftime("%H:%M:%S")
formatted_message = f"[{timestamp}] [WARNING] {message}"
print(formatted_message)
return formatted_message
def error(message):
timestamp = datetime.now().strftime("%H:%M:%S")
formatted_message = f"[{timestamp}] [ERROR] {message}"
print(formatted_message)
return formatted_message
def get_music_files():
"""Get list of available music files in the music directory."""
if not os.path.exists(MUSIC_DIR):
return ["none"]
music_files = [f for f in os.listdir(MUSIC_DIR) if f.endswith(('.mp3', '.wav'))]
if not music_files:
return ["none"]
return ["random"] + music_files
def get_font_files():
"""Get list of available font files in the fonts directory."""
if not os.path.exists(FONTS_DIR):
return ["default"]
font_files = [f.split('.')[0] for f in os.listdir(FONTS_DIR) if f.endswith(('.ttf', '.otf'))]
if not font_files:
return ["default"]
return ["default"] + font_files
def choose_random_music():
"""Selects a random music file from the music directory."""
if not os.path.exists(MUSIC_DIR):
error(f"Music directory {MUSIC_DIR} does not exist")
return None
music_files = [f for f in os.listdir(MUSIC_DIR) if f.endswith(('.mp3', '.wav'))]
if not music_files:
warning(f"No music files found in {MUSIC_DIR}")
return None
return os.path.join(MUSIC_DIR, random.choice(music_files))
class YouTube:
def __init__(self, niche: str, language: str,
text_gen="g4f", text_model="gpt-4",
image_gen="g4f", image_model="flux",
tts_engine="edge", tts_voice="en-US-AriaNeural",
subtitle_font="default", font_size=80,
text_color="white", highlight_color="blue",
subtitles_enabled=True, highlighting_enabled=True,
subtitle_position="bottom", music_file="random",
api_keys=None, progress=gr.Progress()) -> None:
"""Initialize the YouTube Shorts Generator."""
self.progress = progress
self.progress(0, desc="Initializing")
# Store basic parameters
info(f"Initializing YouTube class")
self._niche = niche
self._language = language
self.text_gen = text_gen
self.text_model = text_model
self.image_gen = image_gen
self.image_model = image_model
self.tts_engine = tts_engine
self.tts_voice = tts_voice
self.subtitle_font = subtitle_font
self.font_size = font_size
self.text_color = text_color
self.highlight_color = highlight_color
self.subtitles_enabled = subtitles_enabled
self.highlighting_enabled = highlighting_enabled
self.subtitle_position = subtitle_position
self.music_file = music_file
self.api_keys = api_keys or {}
self.images = []
self.logs = []
# Set API keys from parameters or environment variables
if 'gemini' in self.api_keys and self.api_keys['gemini']:
os.environ["GEMINI_API_KEY"] = self.api_keys['gemini']
if 'assemblyai' in self.api_keys and self.api_keys['assemblyai']:
os.environ["ASSEMBLYAI_API_KEY"] = self.api_keys['assemblyai']
if 'elevenlabs' in self.api_keys and self.api_keys['elevenlabs']:
os.environ["ELEVENLABS_API_KEY"] = self.api_keys['elevenlabs']
if 'segmind' in self.api_keys and self.api_keys['segmind']:
os.environ["SEGMIND_API_KEY"] = self.api_keys['segmind']
if 'openai' in self.api_keys and self.api_keys['openai']:
os.environ["OPENAI_API_KEY"] = self.api_keys['openai']
info(f"Niche: {niche}, Language: {language}")
self.log(f"Initialized with niche: {niche}, language: {language}")
self.log(f"Text generator: {text_gen} - Model: {text_model}")
self.log(f"Image generator: {image_gen} - Model: {image_model}")
self.log(f"TTS engine: {tts_engine} - Voice: {tts_voice}")
self.log(f"Subtitles: {'Enabled' if subtitles_enabled else 'Disabled'} - Highlighting: {'Enabled' if highlighting_enabled else 'Disabled'}")
self.log(f"Music: {music_file}")
def log(self, message):
"""Add a log message to the logs list."""
timestamp = datetime.now().strftime("%H:%M:%S")
log_entry = f"[{timestamp}] {message}"
self.logs.append(log_entry)
return log_entry
@property
def niche(self) -> str:
return self._niche
@property
def language(self) -> str:
return self._language
def generate_response(self, prompt: str, model: str = None) -> str:
"""Generate a response using the selected text generation model."""
self.log(f"Generating response for prompt: {prompt[:50]}...")
try:
if self.text_gen == "gemini":
self.log("Using Google's Gemini model")
# Check if API key is set
gemini_api_key = os.environ.get("GEMINI_API_KEY", "")
if not gemini_api_key:
raise ValueError("Gemini API key is not set. Please provide a valid API key.")
import google.generativeai as genai
genai.configure(api_key=gemini_api_key)
model_to_use = model if model else self.text_model
genai_model = genai.GenerativeModel(model_to_use)
response = genai_model.generate_content(prompt).text
elif self.text_gen == "g4f":
self.log("Using G4F for text generation")
import g4f
model_to_use = model if model else self.text_model
self.log(f"Using G4F model: {model_to_use}")
response = g4f.ChatCompletion.create(
model=model_to_use,
messages=[{"role": "user", "content": prompt}]
)
elif self.text_gen == "openai":
self.log("Using OpenAI for text generation")
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
if not openai_api_key:
raise ValueError("OpenAI API key is not set. Please provide a valid API key.")
from openai import OpenAI
client = OpenAI(api_key=openai_api_key)
model_to_use = model if model else "gpt-3.5-turbo"
response = client.chat.completions.create(
model=model_to_use,
messages=[{"role": "user", "content": prompt}]
).choices[0].message.content
else:
# Default to g4f if other methods aren't available
self.log(f"Using default G4F model as fallback")
import g4f
response = g4f.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
self.log(f"Response generated successfully, length: {len(response)} characters")
return response
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
self.log(error_msg)
raise Exception(error_msg)
def generate_topic(self) -> str:
"""Generate a topic based on the YouTube Channel niche."""
self.progress(0.05, desc="Generating topic")
self.log("Generating topic based on niche")
completion = self.generate_response(
f"Please generate a specific video idea that takes about the following topic: {self.niche}. "
f"Make it exactly one sentence. Only return the topic, nothing else."
)
if not completion:
self.log(error("Failed to generate Topic."))
raise Exception("Failed to generate a topic. Please try again with a different niche.")
self.subject = completion
self.log(success(f"Generated topic: {completion}"))
return completion
def generate_script(self) -> str:
"""Generate a script for a video, based on the subject and language."""
self.progress(0.1, desc="Creating script")
self.log("Generating script for video")
prompt = f"""
Generate a script for youtube shorts video, depending on the subject of the video.
The script is to be returned as a string with the specified number of paragraphs.
Here is an example of a string:
"This is an example string."
Do not under any circumstance reference this prompt in your response.
Get straight to the point, don't start with unnecessary things like, "welcome to this video".
Obviously, the script should be related to the subject of the video.
YOU MUST NOT INCLUDE ANY TYPE OF MARKDOWN OR FORMATTING IN THE SCRIPT, NEVER USE A TITLE.
YOU MUST WRITE THE SCRIPT IN THE LANGUAGE SPECIFIED IN [LANGUAGE].
ONLY RETURN THE RAW CONTENT OF THE SCRIPT. DO NOT INCLUDE "VOICEOVER", "NARRATOR" OR SIMILAR INDICATORS.
Subject: {self.subject}
Language: {self.language}
"""
completion = self.generate_response(prompt)
# Apply regex to remove *
completion = re.sub(r"\*", "", completion)
if not completion:
self.log(error("The generated script is empty."))
raise Exception("Failed to generate a script. Please try again.")
if len(completion) > 5000:
self.log(warning("Generated Script is too long. Retrying..."))
return self.generate_script()
self.script = completion
self.log(success(f"Generated script ({len(completion)} chars)"))
return completion
def generate_metadata(self) -> dict:
"""Generate video metadata (title, description)."""
self.progress(0.15, desc="Creating title and description")
self.log("Generating metadata (title and description)")
title = self.generate_response(
f"Please generate a YouTube Video Title for the following subject, including hashtags: "
f"{self.subject}. Only return the title, nothing else. Limit the title under 100 characters."
)
if len(title) > 100:
self.log(warning("Generated Title is too long. Retrying..."))
return self.generate_metadata()
description = self.generate_response(
f"Please generate a YouTube Video Description for the following script: {self.script}. "
f"Only return the description, nothing else."
)
self.metadata = {
"title": title,
"description": description
}
self.log(success(f"Generated title: {title}"))
self.log(success(f"Generated description: {description[:50]}..."))
return self.metadata
def generate_prompts(self, count=5) -> list:
"""Generate AI Image Prompts based on the provided Video Script."""
self.progress(0.2, desc="Creating image prompts")
self.log(f"Generating {count} image prompts")
prompt = f"""
Generate {count} Image Prompts for AI Image Generation,
depending on the subject of a video.
Subject: {self.subject}
The image prompts are to be returned as
a JSON-Array of strings.
Each search term should consist of a full sentence,
always add the main subject of the video.
Be emotional and use interesting adjectives to make the
Image Prompt as detailed as possible.
YOU MUST ONLY RETURN THE JSON-ARRAY OF STRINGS.
YOU MUST NOT RETURN ANYTHING ELSE.
YOU MUST NOT RETURN THE SCRIPT.
The search terms must be related to the subject of the video.
Here is an example of a JSON-Array of strings:
["image prompt 1", "image prompt 2", "image prompt 3"]
For context, here is the full text:
{self.script}
"""
completion = str(self.generate_response(prompt))\
.replace("```json", "") \
.replace("```", "")
image_prompts = []
if "image_prompts" in completion:
try:
image_prompts = json.loads(completion)["image_prompts"]
except:
self.log(warning("Failed to parse 'image_prompts' from JSON response."))
if not image_prompts:
try:
image_prompts = json.loads(completion)
self.log(f"Parsed image prompts from JSON response.")
except Exception:
self.log(warning("JSON parsing failed. Attempting to extract array using regex..."))
# Get everything between [ and ], and turn it into a list
r = re.compile(r"\[.*\]", re.DOTALL)
matches = r.findall(completion)
if len(matches) == 0:
self.log(warning("Failed to extract array. Creating generic image prompts."))
# Create generic prompts based on the subject
image_prompts = [
f"A beautiful image showing {self.subject}, photorealistic",
f"A detailed visualization of {self.subject}, high quality",
f"An artistic representation of {self.subject}, vibrant colors",
f"A photorealistic image about {self.subject}, high resolution",
f"A dramatic scene related to {self.subject}, cinema quality"
]
else:
try:
image_prompts = json.loads(matches[0])
except:
self.log(error("Failed to parse array from regex match."))
# Use regex to extract individual strings
string_pattern = r'"([^"]*)"'
strings = re.findall(string_pattern, matches[0])
if strings:
image_prompts = strings
else:
# Last resort - split by commas and clean up
image_prompts = [
s.strip().strip('"').strip("'")
for s in matches[0].strip('[]').split(',')
]
# Ensure we have the requested number of prompts
while len(image_prompts) < count:
image_prompts.append(f"A high-quality image about {self.subject}")
# Limit to the requested count
image_prompts = image_prompts[:count]
self.image_prompts = image_prompts
self.log(success(f"Generated {len(self.image_prompts)} Image Prompts"))
for i, prompt in enumerate(self.image_prompts):
self.log(f"Image Prompt {i+1}: {prompt}")
return image_prompts
def generate_image(self, prompt) -> str:
"""Generate an image using the selected image generation model."""
self.log(f"Generating image for prompt: {prompt[:50]}...")
try:
image_path = os.path.join(CACHE_DIR, f"img_{len(self.images)}_{int(time.time())}.png")
if self.image_gen == "prodia":
self.log("Using Prodia provider for image generation")
s = requests.Session()
headers = {
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
}
# Generate job
self.log("Sending generation request to Prodia API")
resp = s.get(
"https://api.prodia.com/generate",
params={
"new": "true",
"prompt": prompt,
"model": self.image_model,
"negative_prompt": "verybadimagenegative_v1.3",
"steps": "20",
"cfg": "7",
"seed": random.randint(1, 10000),
"sample": "DPM++ 2M Karras",
"aspect_ratio": "square"
},
headers=headers
)
if resp.status_code != 200:
raise Exception(f"Prodia API error: {resp.text}")
job_id = resp.json()['job']
self.log(f"Job created with ID: {job_id}")
# Wait for generation to complete
max_attempts = 30
attempts = 0
while attempts < max_attempts:
attempts += 1
time.sleep(2)
status = s.get(f"https://api.prodia.com/job/{job_id}", headers=headers).json()
if status["status"] == "succeeded":
self.log("Image generation successful, downloading result")
img_data = s.get(f"https://images.prodia.xyz/{job_id}.png?download=1", headers=headers).content
with open(image_path, "wb") as f:
f.write(img_data)
self.images.append(image_path)
self.log(success(f"Image saved to: {image_path}"))
return image_path
elif status["status"] == "failed":
raise Exception(f"Prodia job failed: {status.get('error', 'Unknown error')}")
# Still processing
self.log(f"Still processing, attempt {attempts}/{max_attempts}...")
raise Exception("Prodia job timed out")
elif self.image_gen == "hercai":
self.log("Using Hercai provider for image generation")
url = f"https://hercai.onrender.com/{self.image_model}/text2image?prompt={prompt}"
r = requests.get(url)
if r.status_code != 200:
raise Exception(f"Hercai API error: {r.text}")
parsed = r.json()
if "url" in parsed and parsed["url"]:
self.log("Image URL received from Hercai")
image_url = parsed["url"]
img_data = requests.get(image_url).content
with open(image_path, "wb") as f:
f.write(img_data)
self.images.append(image_path)
self.log(success(f"Image saved to: {image_path}"))
return image_path
else:
raise Exception("No image URL in Hercai response")
elif self.image_gen == "g4f":
self.log("Using G4F provider for image generation")
try:
from g4f.client import Client
client = Client()
response = client.images.generate(
model=self.image_model,
prompt=prompt,
response_format="url"
)
if response and response.data and len(response.data) > 0:
image_url = response.data[0].url
image_response = requests.get(image_url)
if image_response.status_code == 200:
with open(image_path, "wb") as f:
f.write(image_response.content)
self.images.append(image_path)
self.log(success(f"Image saved to: {image_path}"))
return image_path
else:
raise Exception(f"Failed to download image from {image_url}")
else:
raise Exception("No image URL received from G4F")
except Exception as e:
raise Exception(f"G4F image generation failed: {str(e)}")
elif self.image_gen == "segmind":
self.log("Using Segmind provider for image generation")
api_key = os.environ.get("SEGMIND_API_KEY", "")
if not api_key:
raise ValueError("Segmind API key is not set. Please provide a valid API key.")
headers = {
"x-api-key": api_key,
"Content-Type": "application/json"
}
response = requests.post(
"https://api.segmind.com/v1/sdxl-turbo",
json={
"prompt": prompt,
"negative_prompt": "blurry, low quality, distorted face, text, watermark",
"samples": 1,
"size": "1024x1024",
"guidance_scale": 1.0
},
headers=headers
)
if response.status_code == 200:
with open(image_path, "wb") as f:
f.write(response.content)
self.images.append(image_path)
self.log(success(f"Image saved to: {image_path}"))
return image_path
else:
raise Exception(f"Segmind request failed: {response.status_code} {response.text}")
elif self.image_gen == "pollinations":
self.log("Using Pollinations provider for image generation")
response = requests.get(f"https://image.pollinations.ai/prompt/{prompt}{random.randint(1,10000)}")
if response.status_code == 200:
self.log("Image received from Pollinations")
with open(image_path, "wb") as f:
f.write(response.content)
self.images.append(image_path)
self.log(success(f"Image saved to: {image_path}"))
return image_path
else:
raise Exception(f"Pollinations request failed with status code: {response.status_code}")
else:
# Default to generating a colored placeholder image
self.log(f"Unknown provider '{self.image_gen}'. Generating placeholder image.")
# Create a placeholder colored image with the prompt text
img = Image.new('RGB', (800, 800), color=(random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255)))
img.save(image_path)
self.images.append(image_path)
self.log(warning(f"Created placeholder image at: {image_path}"))
return image_path
except Exception as e:
error_msg = f"Image generation failed: {str(e)}"
self.log(error(error_msg))
# Create a fallback image
try:
img = Image.new('RGB', (800, 800), color=(200, 200, 200))
image_path = os.path.join(CACHE_DIR, f"error_img_{len(self.images)}_{int(time.time())}.png")
img.save(image_path)
self.images.append(image_path)
self.log(warning(f"Created error placeholder image at: {image_path}"))
return image_path
except:
# If all else fails, return None and handle it gracefully
return None
def generate_speech(self, text, output_format='mp3') -> str:
"""Generate speech from text using the selected TTS engine."""
self.progress(0.6, desc="Creating voiceover")
self.log("Generating speech from text")
# Clean text
text = re.sub(r'[^\w\s.?!,;:\'"-]', '', text)
self.log(f"Using TTS Engine: {self.tts_engine}, Voice: {self.tts_voice}")
audio_path = os.path.join(CACHE_DIR, f"speech_{int(time.time())}.{output_format}")
try:
if self.tts_engine == "elevenlabs":
self.log("Using ElevenLabs provider for speech generation")
elevenlabs_api_key = os.environ.get("ELEVENLABS_API_KEY", "")
if not elevenlabs_api_key:
raise ValueError("ElevenLabs API key is not set. Please provide a valid API key.")
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": elevenlabs_api_key
}
payload = {
"text": text,
"model_id": "eleven_monolingual_v1",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5,
"style": 0.0,
"use_speaker_boost": True
}
}
voice_id = self.tts_voice if self.tts_voice not in ["Sarah", "default"] else "21m00Tcm4TlvDq8ikWAM"
response = requests.post(
url=f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}",
json=payload,
headers=headers
)
if response.status_code == 200:
with open(audio_path, 'wb') as f:
f.write(response.content)
self.log(success(f"Speech generated successfully using ElevenLabs at {audio_path}"))
else:
raise Exception(f"ElevenLabs API error: {response.text}")
elif self.tts_engine == "gtts":
self.log("Using Google TTS provider for speech generation")
from gtts import gTTS
tts = gTTS(text=text, lang=self.language[:2].lower(), slow=False)
tts.save(audio_path)
elif self.tts_engine == "openai":
self.log("Using OpenAI provider for speech generation")
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
if not openai_api_key:
raise ValueError("OpenAI API key is not set. Please provide a valid API key.")
from openai import OpenAI
client = OpenAI(api_key=openai_api_key)
voice = self.tts_voice if self.tts_voice else "alloy"
response = client.audio.speech.create(
model="tts-1",
voice=voice,
input=text
)
response.stream_to_file(audio_path)
elif self.tts_engine == "edge":
self.log("Using Edge TTS provider for speech generation")
import edge_tts
import asyncio
voice = self.tts_voice if self.tts_voice else "en-US-AriaNeural"
async def generate():
communicate = edge_tts.Communicate(text, voice)
await communicate.save(audio_path)
asyncio.run(generate())
else:
# Fallback to gtts
self.log(f"Unknown TTS engine '{self.tts_engine}'. Falling back to gTTS.")
from gtts import gTTS
tts = gTTS(text=text, lang=self.language[:2].lower(), slow=False)
tts.save(audio_path)
self.log(success(f"Speech generated and saved to: {audio_path}"))
self.tts_path = audio_path
return audio_path
except Exception as e:
error_msg = f"Speech generation failed: {str(e)}"
self.log(error(error_msg))
# Create a silent audio file as fallback
try:
from pydub import AudioSegment
from pydub.generators import Sine
# Generate 30 seconds of silence
silence = AudioSegment.silent(duration=30000)
silence.export(audio_path, format=output_format)
self.log(warning(f"Created silent audio fallback at: {audio_path}"))
self.tts_path = audio_path
return audio_path
except:
self.log(error("Failed to create silent audio fallback"))
return None
def generate_subtitles(self, audio_path):
"""Generate word-level subtitles for the video."""
if not self.subtitles_enabled:
self.log("Subtitles are disabled. Skipping subtitle generation.")
return None
self.progress(0.65, desc="Creating subtitles")
self.log("Starting subtitle generation process")
try:
assemblyai_api_key = os.environ.get("ASSEMBLYAI_API_KEY", "")
if not assemblyai_api_key:
self.log(warning("AssemblyAI API key not set. Generating simulated subtitles."))
return self._generate_simulated_subtitles()
import assemblyai as aai
aai.settings.api_key = assemblyai_api_key
config = aai.TranscriptionConfig(speaker_labels=False, word_boost=[], format_text=True)
transcriber = aai.Transcriber(config=config)
self.log("Submitting audio for transcription")
transcript = transcriber.transcribe(audio_path)
if not transcript or not transcript.words:
self.log(warning("Transcription returned no words. Using simulated subtitles."))
return self._generate_simulated_subtitles()
# Process word-level information
wordlevel_info = []
for word in transcript.words:
word_data = {
"word": word.text.strip(),
"start": word.start / 1000.0,
"end": word.end / 1000.0
}
wordlevel_info.append(word_data)
self.log(success(f"Transcription successful. Got {len(wordlevel_info)} words."))
# Define constants for subtitle generation
FONT = self.subtitle_font
FONTSIZE = self.font_size
COLOR = self.text_color
BG_COLOR = self.highlight_color if self.highlighting_enabled else None
FRAME_SIZE = (1080, 1920)
MAX_CHARS = 30
MAX_DURATION = 3.0
MAX_GAP = 2.5
# Split text into lines based on character count, duration, and gap
subtitles = []
line = []
line_duration = 0
for idx, word_data in enumerate(wordlevel_info):
line.append(word_data)
line_duration += word_data["end"] - word_data["start"]
temp = " ".join(item["word"] for item in line)
new_line_chars = len(temp)
duration_exceeded = line_duration > MAX_DURATION
chars_exceeded = new_line_chars > MAX_CHARS
if idx > 0:
gap = word_data['start'] - wordlevel_info[idx - 1]['end']
maxgap_exceeded = gap > MAX_GAP
else:
maxgap_exceeded = False
# Check if any condition is exceeded to finalize the current line
if duration_exceeded or chars_exceeded or maxgap_exceeded:
if line:
subtitle_line = {
"text": " ".join(item["word"] for item in line),
"start": line[0]["start"],
"end": line[-1]["end"],
"words": line
}
subtitles.append(subtitle_line)
line = []
line_duration = 0
# Add the remaining words as the last subtitle line if any
if line:
subtitle_line = {
"text": " ".join(item["word"] for item in line),
"start": line[0]["start"],
"end": line[-1]["end"],
"words": line
}
subtitles.append(subtitle_line)
self.log(success(f"Generated {len(subtitles)} subtitle lines"))
return {
"wordlevel": wordlevel_info,
"linelevel": subtitles,
"settings": {
"font": FONT,
"fontsize": FONTSIZE,
"color": COLOR,
"bg_color": BG_COLOR,
"position": self.subtitle_position,
"highlighting_enabled": self.highlighting_enabled
}
}
except Exception as e:
error_msg = f"Subtitle generation failed: {str(e)}"
self.log(error(error_msg))
return self._generate_simulated_subtitles()
def _generate_simulated_subtitles(self):
"""Generate simulated subtitles when AssemblyAI is not available."""
self.log("Generating simulated subtitles")
# Split script into words
words = self.script.split()
# Estimate audio duration based on word count (average speaking rate)
estimated_duration = len(words) * 0.3 # 0.3 seconds per word on average
# Generate word-level timings
wordlevel_info = []
current_time = 0
for word in words:
# Adjust duration based on word length
word_duration = 0.2 + min(0.05 * len(word), 0.3) # Between 0.2 and 0.5 seconds
word_data = {
"word": word,
"start": current_time,
"end": current_time + word_duration
}
wordlevel_info.append(word_data)
# Add a small gap between words
current_time += word_duration + 0.05
# Generate line-level subtitles
subtitles = []
line = []
line_start = 0
line_text = ""
for word_data in wordlevel_info:
# Check if adding this word would exceed character limit
if len(line_text + " " + word_data["word"]) > 30 and line:
# Finalize current line
subtitle_line = {
"text": line_text,
"start": line_start,
"end": line[-1]["end"],
"words": line.copy()
}
subtitles.append(subtitle_line)
# Start new line
line = [word_data]
line_start = word_data["start"]
line_text = word_data["word"]
else:
# Add word to current line
line.append(word_data)
line_text = (line_text + " " + word_data["word"]).strip()
if len(line) == 1:
line_start = word_data["start"]
# Add final line if not empty
if line:
subtitle_line = {
"text": line_text,
"start": line_start,
"end": line[-1]["end"],
"words": line
}
subtitles.append(subtitle_line)
self.log(success(f"Generated {len(wordlevel_info)} simulated word timings and {len(subtitles)} subtitle lines"))
# Define settings for subtitle display
settings = {
"font": self.subtitle_font,
"fontsize": self.font_size,
"color": self.text_color,
"bg_color": self.highlight_color if self.highlighting_enabled else None,
"position": self.subtitle_position,
"highlighting_enabled": self.highlighting_enabled
}
return {
"wordlevel": wordlevel_info,
"linelevel": subtitles,
"settings": settings
}
def combine(self) -> str:
"""Combine images, audio, and subtitles into a final video."""
self.progress(0.8, desc="Creating final video")
self.log("Combining images and audio into final video")
try:
output_path = os.path.join(CACHE_DIR, f"output_{int(time.time())}.mp4")
# Check for required files
if not self.images:
raise ValueError("No images available for video creation")
if not hasattr(self, 'tts_path') or not self.tts_path or not os.path.exists(self.tts_path):
raise ValueError("No TTS audio file available")
# Load audio
tts_clip = AudioFileClip(self.tts_path)
max_duration = tts_clip.duration
# Calculate duration for each image
num_images = len(self.images)
req_dur = max_duration / num_images
# Create video clips from images
clips = []
tot_dur = 0
# Loop through images, repeating if necessary to fill audio duration
while tot_dur < max_duration:
for image_path in self.images:
# Check if image exists and is valid
if not os.path.exists(image_path):
self.log(warning(f"Image not found: {image_path}, skipping"))
continue
try:
clip = ImageClip(image_path)
clip = clip.set_duration(req_dur)
clip = clip.set_fps(30)
# Handle aspect ratio (vertical video for shorts)
aspect_ratio = 9/16 # Standard vertical video ratio
if clip.w / clip.h < aspect_ratio:
# Image is too tall, crop height
clip = crop(
clip,
width=clip.w,
height=round(clip.w / aspect_ratio),
x_center=clip.w / 2,
y_center=clip.h / 2
)
else:
# Image is too wide, crop width
clip = crop(
clip,
width=round(aspect_ratio * clip.h),
height=clip.h,
x_center=clip.w / 2,
y_center=clip.h / 2
)
# Resize to standard size for shorts
clip = clip.resize((1080, 1920))
clips.append(clip)
tot_dur += clip.duration
# If we've exceeded the duration, break
if tot_dur >= max_duration:
break
except Exception as e:
self.log(warning(f"Error processing image {image_path}: {str(e)}"))
# Create video from clips
self.log(f"Creating video from {len(clips)} clips")
final_clip = concatenate_videoclips(clips)
final_clip = final_clip.set_fps(30)
# Add background music if available
music_path = None
if self.music_file == "random":
music_path = choose_random_music()
elif self.music_file != "none" and os.path.exists(os.path.join(MUSIC_DIR, self.music_file)):
music_path = os.path.join(MUSIC_DIR, self.music_file)
if music_path and os.path.exists(music_path):
self.log(f"Adding background music: {music_path}")
try:
music_clip = AudioFileClip(music_path)
# Loop music if it's shorter than the video
if music_clip.duration < max_duration:
repeats = int(max_duration / music_clip.duration) + 1
music_clip = concatenate_audioclips([music_clip] * repeats)
# Trim if it's longer
music_clip = music_clip.subclip(0, max_duration)
# Reduce volume
music_clip = music_clip.fx(volumex, 0.1)
# Combine audio tracks
comp_audio = CompositeAudioClip([tts_clip, music_clip])
final_clip = final_clip.set_audio(comp_audio)
except Exception as e:
self.log(warning(f"Error adding background music: {str(e)}"))
final_clip = final_clip.set_audio(tts_clip)
else:
self.log("No background music found, using TTS audio only")
final_clip = final_clip.set_audio(tts_clip)
# Set final duration
final_clip = final_clip.set_duration(tts_clip.duration)
# Generate subtitles if enabled
subtitle_clips = []
if self.subtitles_enabled:
subtitles = self.generate_subtitles(self.tts_path)
if subtitles and 'wordlevel' in subtitles:
self.log("Adding word-level subtitles")
from moviepy.video.tools.subtitles import TextClip
# Define subtitle styles
font = subtitles['settings']['font'] if subtitles['settings']['font'] != "default" and os.path.exists(os.path.join(FONTS_DIR, f"{subtitles['settings']['font']}.ttf")) else None
fontsize = subtitles['settings']['fontsize']
color = subtitles['settings']['color']
bg_color = subtitles['settings']['bg_color'] if subtitles['settings']['highlighting_enabled'] else None
# Calculate position based on subtitle_position setting
frame_width, frame_height = 1080, 1920
if self.subtitle_position == "top":
y_pos = frame_height * 0.1 # Position at 10% from top
elif self.subtitle_position == "middle":
y_pos = frame_height * 0.5 # Position at middle
else: # bottom (default)
y_pos = frame_height * 0.85 # Position at 85% from top
for subtitle in subtitles['linelevel']:
full_duration = subtitle['end'] - subtitle['start']
# Initialize position for each subtitle line
x_pos = 0
x_buffer = frame_width * 1 / 10
# Handle word-level subtitles if highlighting is enabled
if self.highlighting_enabled:
# Add each word with proper timing and highlighting
for word_data in subtitle['words']:
word = word_data['word']
start = word_data['start']
end = word_data['end']
# Create text clip for word
try:
word_clip = TextClip(
txt=word,
font=font,
fontsize=fontsize,
color=color,
bg_color=bg_color,
stroke_color='black',
stroke_width=1
).set_position((x_pos + x_buffer, y_pos)).set_start(start).set_duration(end - start)
subtitle_clips.append(word_clip)
x_pos += word_clip.w + 10 # Add spacing between words
# Wrap to next line if needed
if x_pos + word_clip.w > frame_width - 2 * x_buffer:
x_pos = 0
y_pos += word_clip.h + 10
except Exception as e:
self.log(warning(f"Error creating subtitle for word '{word}': {str(e)}"))
else:
# Show entire line without word-level highlighting
try:
line_clip = TextClip(
txt=subtitle['text'],
font=font,
fontsize=fontsize,
color=color,
bg_color=None,
stroke_color='black',
stroke_width=1,
method='caption',
size=(frame_width - 2 * x_buffer, None),
align='center'
).set_position(('center', y_pos)).set_start(subtitle['start']).set_duration(full_duration)
subtitle_clips.append(line_clip)
except Exception as e:
self.log(warning(f"Error creating subtitle line: {str(e)}"))
# Add subtitles to video if any were created
if subtitle_clips:
self.log(f"Adding {len(subtitle_clips)} subtitle clips to video")
final_clip = CompositeVideoClip([final_clip] + subtitle_clips)
# Write final video
self.log("Writing final video file")
final_clip.write_videofile(output_path, threads=4, codec='libx264', audio_codec='aac')
success_msg = f"Video successfully created at: {output_path}"
self.log(success(success_msg))
self.video_path = output_path
return output_path
except Exception as e:
error_msg = f"Error combining video: {str(e)}"
self.log(error(error_msg))
# Create a minimal fallback video if possible
try:
# Try to create a simple video with just the first image and audio
fallback_path = os.path.join(CACHE_DIR, f"fallback_{int(time.time())}.mp4")
if self.images and os.path.exists(self.images[0]) and hasattr(self, 'tts_path') and os.path.exists(self.tts_path):
img_clip = ImageClip(self.images[0]).set_duration(10)
img_clip = img_clip.resize((1080, 1920))
audio_clip = AudioFileClip(self.tts_path).subclip(0, min(10, AudioFileClip(self.tts_path).duration))
video_clip = img_clip.set_audio(audio_clip)
video_clip.write_videofile(fallback_path, threads=2, codec='libx264', audio_codec='aac')
self.log(warning(f"Created fallback video at: {fallback_path}"))
self.video_path = fallback_path
return fallback_path
else:
raise Exception("Cannot create fallback video: missing images or audio")
except Exception as fallback_error:
self.log(error(f"Failed to create fallback video: {str(fallback_error)}"))
return None
def generate_video(self) -> dict:
"""Generate complete video with all components."""
try:
self.log("Starting video generation process")
# Step 1: Generate topic
self.log("Generating topic")
self.generate_topic()
# Step 2: Generate script
self.progress(0.1, desc="Creating script")
self.log("Generating script")
self.generate_script()
# Step 3: Generate metadata
self.progress(0.2, desc="Creating metadata")
self.log("Generating metadata")
self.generate_metadata()
# Step 4: Generate image prompts
self.progress(0.3, desc="Creating image prompts")
self.log("Generating image prompts")
self.generate_prompts()
# Step 5: Generate images
self.progress(0.4, desc="Generating images")
self.log("Generating images")
for i, prompt in enumerate(self.image_prompts, 1):
self.progress(0.4 + 0.2 * (i / len(self.image_prompts)),
desc=f"Generating image {i}/{len(self.image_prompts)}")
self.log(f"Generating image {i}/{len(self.image_prompts)}")
self.generate_image(prompt)
# Step 6: Generate speech
self.progress(0.6, desc="Creating speech")
self.log("Generating speech")
self.generate_speech(self.script)
# Step 7: Combine all elements into final video
self.progress(0.8, desc="Creating final video")
self.log("Combining all elements into final video")
path = self.combine()
self.progress(0.95, desc="Finalizing")
self.log(f"Video generation complete. File saved at: {path}")
# Return the result
return {
'video_path': path,
'title': self.metadata['title'],
'description': self.metadata['description'],
'subject': self.subject,
'script': self.script,
'logs': self.logs
}
except Exception as e:
error_msg = f"Error during video generation: {str(e)}"
self.log(error(error_msg))
raise Exception(error_msg)
# Data for dynamic dropdowns
def get_text_generator_models(generator):
"""Get available models for the selected text generator."""
models = {
"gemini": [
"gemini-2.0-flash",
"gemini-2.0-flash-lite",
"gemini-1.5-flash",
"gemini-1.5-flash-8b",
"gemini-1.5-pro"
],
"g4f": [
"gpt-4",
"gpt-4o",
"gpt-3.5-turbo",
"llama-3-70b-chat",
"claude-3-opus-20240229",
"claude-3-sonnet-20240229",
"claude-3-haiku-20240307"
],
"openai": [
"gpt-4o",
"gpt-4-turbo",
"gpt-3.5-turbo"
]
}
return models.get(generator, ["default"])
def get_image_generator_models(generator):
"""Get available models for the selected image generator."""
models = {
"prodia": [
"sdxl",
"realvisxl",
"juggernaut",
"dreamshaper",
"dalle"
],
"hercai": [
"v1",
"v2",
"v3",
"lexica"
],
"g4f": [
"flux",
"dall-e-3",
"dall-e-2",
"midjourney"
],
"segmind": [
"sdxl-turbo",
"realistic-vision",
"sd3"
],
"pollinations": [
"default"
]
}
return models.get(generator, ["default"])
def get_tts_voices(engine):
"""Get available voices for the selected TTS engine."""
voices = {
"elevenlabs": [
"Sarah",
"Brian",
"Lily",
"Monika Sogam",
"George",
"River",
"Matilda",
"Will",
"Jessica"
],
"openai": [
"alloy",
"echo",
"fable",
"onyx",
"nova",
"shimmer"
],
"edge": [
"en-US-AriaNeural",
"en-US-GuyNeural",
"en-GB-SoniaNeural",
"en-AU-NatashaNeural"
],
"gtts": [
"en",
"es",
"fr",
"de",
"it",
"pt",
"ru",
"ja",
"zh",
"hi"
]
}
return voices.get(engine, ["default"])
# Create the Gradio interface
def create_interface():
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo"), title="YouTube Shorts Generator") as demo:
with gr.Row():
gr.Markdown(
"""
# 📱 YouTube Shorts Generator
Generate engaging YouTube Shorts videos with AI. Just provide a niche and language to get started!
"""
)
with gr.Row(equal_height=True):
# Left panel: Content Settings
with gr.Column(scale=1, min_width=400):
with gr.Group():
gr.Markdown("### 📝 Content")
niche = gr.Textbox(
label="Niche/Topic",
placeholder="What's your video about?",
value="Historical Facts"
)
language = gr.Dropdown(
choices=["English", "Spanish", "French", "German", "Italian", "Portuguese",
"Russian", "Japanese", "Chinese", "Hindi"],
label="Language",
value="English"
)
# Middle panel: Generator Settings
with gr.Group():
gr.Markdown("### 🔧 Generator Settings")
with gr.Tabs():
with gr.TabItem("Text"):
text_gen = gr.Dropdown(
choices=["g4f", "gemini", "openai"],
label="Text Generator",
value="g4f"
)
text_model = gr.Dropdown(
choices=get_text_generator_models("g4f"),
label="Text Model",
value="gpt-4"
)
with gr.TabItem("Image"):
image_gen = gr.Dropdown(
choices=["g4f", "prodia", "hercai", "segmind", "pollinations"],
label="Image Generator",
value="g4f"
)
image_model = gr.Dropdown(
choices=get_image_generator_models("g4f"),
label="Image Model",
value="flux"
)
with gr.TabItem("Audio"):
tts_engine = gr.Dropdown(
choices=["edge", "elevenlabs", "gtts", "openai"],
label="Speech Engine",
value="edge"
)
tts_voice = gr.Dropdown(
choices=get_tts_voices("edge"),
label="Voice",
value="en-US-AriaNeural"
)
music_file = gr.Dropdown(
choices=get_music_files(),
label="Background Music",
value="random"
)
with gr.TabItem("Subtitles"):
subtitles_enabled = gr.Checkbox(label="Enable Subtitles", value=True)
highlighting_enabled = gr.Checkbox(label="Enable Word Highlighting", value=True)
subtitle_font = gr.Dropdown(
choices=get_font_files(),
label="Font",
value="default"
)
with gr.Row():
font_size = gr.Slider(
minimum=40,
maximum=120,
value=80,
step=5,
label="Font Size"
)
subtitle_position = gr.Dropdown(
choices=["bottom", "middle", "top"],
label="Position",
value="bottom"
)
with gr.Row():
text_color = gr.ColorPicker(label="Text Color", value="#FFFFFF")
highlight_color = gr.ColorPicker(label="Highlight Color", value="#0000FF")
# API Keys section
with gr.Accordion("🔑 API Keys", open=False):
gemini_api_key = gr.Textbox(
label="Gemini API Key",
type="password",
value=os.environ.get("GEMINI_API_KEY", "")
)
assemblyai_api_key = gr.Textbox(
label="AssemblyAI API Key",
type="password",
value=os.environ.get("ASSEMBLYAI_API_KEY", "")
)
elevenlabs_api_key = gr.Textbox(
label="ElevenLabs API Key",
type="password",
value=os.environ.get("ELEVENLABS_API_KEY", "")
)
segmind_api_key = gr.Textbox(
label="Segmind API Key",
type="password",
value=os.environ.get("SEGMIND_API_KEY", "")
)
openai_api_key = gr.Textbox(
label="OpenAI API Key",
type="password",
value=os.environ.get("OPENAI_API_KEY", "")
)
# Generate button
generate_btn = gr.Button("🎬 Generate Video", variant="primary", size="lg")
# Right panel: Output display
with gr.Column(scale=1, min_width=400):
with gr.Tabs():
with gr.TabItem("Video"):
video_output = gr.Video(label="Generated Video", height=600)
with gr.TabItem("Metadata"):
title_output = gr.Textbox(label="Title", lines=2)
description_output = gr.Textbox(label="Description", lines=4)
script_output = gr.Textbox(label="Script", lines=8)
with gr.TabItem("Log"):
log_output = gr.Textbox(label="Process Log", lines=20, max_lines=100)
# Dynamic dropdown updates
def update_text_models(generator):
return gr.Dropdown(choices=get_text_generator_models(generator))
def update_image_models(generator):
return gr.Dropdown(choices=get_image_generator_models(generator))
def update_tts_voices(engine):
return gr.Dropdown(choices=get_tts_voices(engine))
# Connect the change events
text_gen.change(fn=update_text_models, inputs=text_gen, outputs=text_model)
image_gen.change(fn=update_image_models, inputs=image_gen, outputs=image_model)
tts_engine.change(fn=update_tts_voices, inputs=tts_engine, outputs=tts_voice)
# Main generation function
def generate_youtube_short(niche, language, gemini_api_key, assemblyai_api_key,
elevenlabs_api_key, segmind_api_key, openai_api_key,
text_gen, text_model, image_gen, image_model,
tts_engine, tts_voice, subtitles_enabled, highlighting_enabled,
subtitle_font, font_size, subtitle_position,
text_color, highlight_color, music_file, progress=gr.Progress()):
if not niche.strip():
return {
video_output: None,
title_output: "ERROR: Please enter a niche/topic",
description_output: "",
script_output: "",
log_output: "Error: Niche/Topic is required. Please enter a valid topic and try again."
}
# Create API keys dictionary
api_keys = {
'gemini': gemini_api_key,
'assemblyai': assemblyai_api_key,
'elevenlabs': elevenlabs_api_key,
'segmind': segmind_api_key,
'openai': openai_api_key
}
try:
# Initialize YouTube class
yt = YouTube(
niche=niche,
language=language,
text_gen=text_gen,
text_model=text_model,
image_gen=image_gen,
image_model=image_model,
tts_engine=tts_engine,
tts_voice=tts_voice,
subtitle_font=subtitle_font,
font_size=font_size,
text_color=text_color,
highlight_color=highlight_color,
subtitles_enabled=subtitles_enabled,
highlighting_enabled=highlighting_enabled,
subtitle_position=subtitle_position,
music_file=music_file,
api_keys=api_keys,
progress=progress
)
# Generate video
result = yt.generate_video()
# Check if video was successfully created
if not result or not result.get('video_path') or not os.path.exists(result.get('video_path', '')):
return {
video_output: None,
title_output: "ERROR: Video generation failed",
description_output: "",
script_output: "",
log_output: "\n".join(yt.logs)
}
return {
video_output: result['video_path'],
title_output: result['title'],
description_output: result['description'],
script_output: result['script'],
log_output: "\n".join(result['logs'])
}
except Exception as e:
import traceback
error_details = f"Error: {str(e)}\n\n{traceback.format_exc()}"
return {
video_output: None,
title_output: f"ERROR: {str(e)}",
description_output: "",
script_output: "",
log_output: error_details
}
# Connect the button click event
generate_btn.click(
fn=generate_youtube_short,
inputs=[
niche, language, gemini_api_key, assemblyai_api_key, elevenlabs_api_key,
segmind_api_key, openai_api_key, text_gen, text_model, image_gen, image_model,
tts_engine, tts_voice, subtitles_enabled, highlighting_enabled,
subtitle_font, font_size, subtitle_position, text_color, highlight_color, music_file
],
outputs=[video_output, title_output, description_output, script_output, log_output]
)
# Add examples
gr.Examples(
[
["Historical Facts", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-AriaNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#0000FF", "random"],
["Cooking Tips", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-AriaNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#FF0000", "random"],
["Technology News", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-GuyNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#00FF00", "random"],
],
[niche, language, text_gen, text_model, image_gen, image_model, tts_engine, tts_voice,
subtitles_enabled, highlighting_enabled, subtitle_font, font_size,
subtitle_position, text_color, highlight_color, music_file],
label="Quick Start Templates"
)
return demo
# Create and launch the interface
if __name__ == "__main__":
# Create necessary directories
os.makedirs(CACHE_DIR, exist_ok=True)
os.makedirs(MUSIC_DIR, exist_ok=True)
os.makedirs(FONTS_DIR, exist_ok=True)
# Launch the app
demo = create_interface()
demo.launch()