# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University) # 2023 Voicecomm Inc (Kai Li) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from ESPnet(https://github.com/espnet/espnet) """MLP with convolutional gating (cgMLP) definition. References: https://openreview.net/forum?id=RA-zVvZLYIy https://arxiv.org/abs/2105.08050 """ from typing import Tuple import torch import torch.nn as nn from wenet.utils.class_utils import WENET_ACTIVATION_CLASSES class ConvolutionalSpatialGatingUnit(torch.nn.Module): """Convolutional Spatial Gating Unit (CSGU).""" def __init__( self, size: int, kernel_size: int, dropout_rate: float, use_linear_after_conv: bool, gate_activation: str, causal: bool = True, ): super().__init__() # split input channels n_channels = size // 2 self.norm = nn.LayerNorm(n_channels) # self.lorder is used to distinguish if it's a causal convolution, # if self.lorder > 0: it's a causal convolution, the input will be # padded with self.lorder frames on the left in forward. # else: it's a symmetrical convolution if causal: padding = 0 self.lorder = kernel_size - 1 else: # kernel_size should be an odd number for none causal convolution assert (kernel_size - 1) % 2 == 0 padding = (kernel_size - 1) // 2 self.lorder = 0 self.conv = torch.nn.Conv1d( n_channels, n_channels, kernel_size, 1, padding, groups=n_channels, ) if use_linear_after_conv: self.linear = torch.nn.Linear(n_channels, n_channels) else: self.linear = None if gate_activation == "identity": self.act = torch.nn.Identity() else: self.act = WENET_ACTIVATION_CLASSES[gate_activation]() self.dropout = torch.nn.Dropout(dropout_rate) def espnet_initialization_fn(self): torch.nn.init.normal_(self.conv.weight, std=1e-6) torch.nn.init.ones_(self.conv.bias) if self.linear is not None: torch.nn.init.normal_(self.linear.weight, std=1e-6) torch.nn.init.ones_(self.linear.bias) def forward( self, x: torch.Tensor, cache: torch.Tensor = torch.zeros((0, 0, 0)) ) -> Tuple[torch.Tensor, torch.Tensor]: """Forward method Args: x (torch.Tensor): (batch, time, channels) cache (torch.Tensor): left context cache, it is only used in causal convolution (#batch, channels, cache_t), (0, 0, 0) meas fake cache. Returns: out (torch.Tensor): (batch, time, channels/2) """ x_r, x_g = x.chunk(2, dim=-1) # exchange the temporal dimension and the feature dimension x_g = x_g.transpose(1, 2) # (#batch, channels, time) if self.lorder > 0: if cache.size(2) == 0: # cache_t == 0 x_g = nn.functional.pad(x_g, (self.lorder, 0), 'constant', 0.0) else: assert cache.size(0) == x_g.size(0) # equal batch assert cache.size(1) == x_g.size(1) # equal channel x_g = torch.cat((cache, x_g), dim=2) assert (x_g.size(2) > self.lorder) new_cache = x_g[:, :, -self.lorder:] else: # It's better we just return None if no cache is required, # However, for JIT export, here we just fake one tensor instead of # None. new_cache = torch.zeros((0, 0, 0), dtype=x_g.dtype, device=x_g.device) x_g = x_g.transpose(1, 2) x_g = self.norm(x_g) # (N, T, D/2) x_g = self.conv(x_g.transpose(1, 2)).transpose(1, 2) # (N, T, D/2) if self.linear is not None: x_g = self.linear(x_g) x_g = self.act(x_g) out = x_r * x_g # (N, T, D/2) out = self.dropout(out) return out, new_cache class ConvolutionalGatingMLP(torch.nn.Module): """Convolutional Gating MLP (cgMLP).""" def __init__( self, size: int, linear_units: int, kernel_size: int, dropout_rate: float, use_linear_after_conv: bool, gate_activation: str, causal: bool = True, ): super().__init__() self.channel_proj1 = torch.nn.Sequential( torch.nn.Linear(size, linear_units), torch.nn.GELU()) self.csgu = ConvolutionalSpatialGatingUnit( size=linear_units, kernel_size=kernel_size, dropout_rate=dropout_rate, use_linear_after_conv=use_linear_after_conv, gate_activation=gate_activation, causal=causal, ) self.channel_proj2 = torch.nn.Linear(linear_units // 2, size) def forward( self, x: torch.Tensor, mask: torch.Tensor, cache: torch.Tensor = torch.zeros((0, 0, 0)) ) -> Tuple[torch.Tensor, torch.Tensor]: """Forward method Args: x (torch.Tensor): (batch, time, channels) mask_pad (torch.Tensor): used for batch padding (#batch, 1, time), (0, 0, 0) means fake mask. Not used yet cache (torch.Tensor): left context cache, it is only used in causal convolution (#batch, channels, cache_t), (0, 0, 0) meas fake cache. Returns: out (torch.Tensor): (batch, time, channels/2) """ xs_pad = x # size -> linear_units xs_pad = self.channel_proj1(xs_pad) # linear_units -> linear_units/2 xs_pad, new_cnn_cache = self.csgu(xs_pad, cache) # linear_units/2 -> size xs_pad = self.channel_proj2(xs_pad) out = xs_pad return out, new_cnn_cache