Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2022 Ximalaya Inc. (authors: Yuguang Yang) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""SqueezeformerEncoderLayer definition.""" | |
import torch | |
import torch.nn as nn | |
from typing import Optional, Tuple | |
class SqueezeformerEncoderLayer(nn.Module): | |
"""Encoder layer module. | |
Args: | |
size (int): Input dimension. | |
self_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` | |
instance can be used as the argument. | |
feed_forward1 (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward` instance can be used as the argument. | |
conv_module (torch.nn.Module): Convolution module instance. | |
`ConvlutionModule` instance can be used as the argument. | |
feed_forward2 (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward` instance can be used as the argument. | |
dropout_rate (float): Dropout rate. | |
normalize_before (bool): | |
True: use layer_norm before each sub-block. | |
False: use layer_norm after each sub-block. | |
""" | |
def __init__( | |
self, | |
size: int, | |
self_attn: torch.nn.Module, | |
feed_forward1: Optional[nn.Module] = None, | |
conv_module: Optional[nn.Module] = None, | |
feed_forward2: Optional[nn.Module] = None, | |
normalize_before: bool = False, | |
dropout_rate: float = 0.1, | |
concat_after: bool = False, | |
): | |
super(SqueezeformerEncoderLayer, self).__init__() | |
self.size = size | |
self.self_attn = self_attn | |
self.layer_norm1 = nn.LayerNorm(size) | |
self.ffn1 = feed_forward1 | |
self.layer_norm2 = nn.LayerNorm(size) | |
self.conv_module = conv_module | |
self.layer_norm3 = nn.LayerNorm(size) | |
self.ffn2 = feed_forward2 | |
self.layer_norm4 = nn.LayerNorm(size) | |
self.normalize_before = normalize_before | |
self.dropout = nn.Dropout(dropout_rate) | |
self.concat_after = concat_after | |
if concat_after: | |
self.concat_linear = nn.Linear(size + size, size) | |
else: | |
self.concat_linear = nn.Identity() | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
# self attention module | |
residual = x | |
if self.normalize_before: | |
x = self.layer_norm1(x) | |
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, | |
att_cache) | |
if self.concat_after: | |
x_concat = torch.cat((x, x_att), dim=-1) | |
x = residual + self.concat_linear(x_concat) | |
else: | |
x = residual + self.dropout(x_att) | |
if not self.normalize_before: | |
x = self.layer_norm1(x) | |
# ffn module | |
residual = x | |
if self.normalize_before: | |
x = self.layer_norm2(x) | |
x = self.ffn1(x) | |
x = residual + self.dropout(x) | |
if not self.normalize_before: | |
x = self.layer_norm2(x) | |
# conv module | |
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
residual = x | |
if self.normalize_before: | |
x = self.layer_norm3(x) | |
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) | |
x = residual + self.dropout(x) | |
if not self.normalize_before: | |
x = self.layer_norm3(x) | |
# ffn module | |
residual = x | |
if self.normalize_before: | |
x = self.layer_norm4(x) | |
x = self.ffn2(x) | |
# we do not use dropout here since it is inside feed forward function | |
x = residual + self.dropout(x) | |
if not self.normalize_before: | |
x = self.layer_norm4(x) | |
return x, mask, new_att_cache, new_cnn_cache | |