File size: 7,099 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University)
#               2023 Voicecomm Inc (Kai Li)
#               2023 Lucky Wong
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""EBranchformerEncoderLayer definition."""

import torch
import torch.nn as nn
from typing import Optional, Tuple

from wenet.transformer.attention import T_CACHE


class EBranchformerEncoderLayer(torch.nn.Module):
    """E-Branchformer encoder layer module.

    Args:
        size (int): model dimension
        attn: standard self-attention or efficient attention
        cgmlp: ConvolutionalGatingMLP
        feed_forward: feed-forward module, optional
        feed_forward: macaron-style feed-forward module, optional
        dropout_rate (float): dropout probability
        merge_conv_kernel (int): kernel size of the depth-wise conv in merge module
    """

    def __init__(
        self,
        size: int,
        attn: torch.nn.Module,
        cgmlp: torch.nn.Module,
        feed_forward: Optional[torch.nn.Module],
        feed_forward_macaron: Optional[torch.nn.Module],
        dropout_rate: float,
        merge_conv_kernel: int = 3,
        causal: bool = True,
        stochastic_depth_rate=0.0,
    ):
        super().__init__()

        self.size = size
        self.attn = attn
        self.cgmlp = cgmlp

        self.feed_forward = feed_forward
        self.feed_forward_macaron = feed_forward_macaron
        self.ff_scale = 1.0
        if self.feed_forward is not None:
            self.norm_ff = nn.LayerNorm(size)
        if self.feed_forward_macaron is not None:
            self.ff_scale = 0.5
            self.norm_ff_macaron = nn.LayerNorm(size)

        self.norm_mha = nn.LayerNorm(size)  # for the MHA module
        self.norm_mlp = nn.LayerNorm(size)  # for the MLP module
        # for the final output of the block
        self.norm_final = nn.LayerNorm(size)

        self.dropout = torch.nn.Dropout(dropout_rate)

        if causal:
            padding = 0
            self.lorder = merge_conv_kernel - 1
        else:
            # kernel_size should be an odd number for none causal convolution
            assert (merge_conv_kernel - 1) % 2 == 0
            padding = (merge_conv_kernel - 1) // 2
            self.lorder = 0
        self.depthwise_conv_fusion = torch.nn.Conv1d(
            size + size,
            size + size,
            kernel_size=merge_conv_kernel,
            stride=1,
            padding=padding,
            groups=size + size,
            bias=True,
        )
        self.merge_proj = torch.nn.Linear(size + size, size)
        self.stochastic_depth_rate = stochastic_depth_rate

    def _forward(
        self,
        x: torch.Tensor,
        mask: torch.Tensor,
        pos_emb: torch.Tensor,
        mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        att_cache: T_CACHE = (torch.zeros(
            (0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)),
        cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
        stoch_layer_coeff: float = 1.0
    ) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]:

        if self.feed_forward_macaron is not None:
            residual = x
            x = self.norm_ff_macaron(x)
            x = residual + stoch_layer_coeff * self.ff_scale * self.dropout(
                self.feed_forward_macaron(x))

        # Two branches
        x1 = x
        x2 = x

        # Branch 1: multi-headed attention module
        x1 = self.norm_mha(x1)
        x_att, new_att_cache = self.attn(x1, x1, x1, mask, pos_emb, att_cache)
        x1 = self.dropout(x_att)

        # Branch 2: convolutional gating mlp
        # Fake new cnn cache here, and then change it in conv_module
        new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
        x2 = self.norm_mlp(x2)
        x2, new_cnn_cache = self.cgmlp(x2, mask_pad, cnn_cache)
        x2 = self.dropout(x2)

        # Merge two branches
        x_concat = torch.cat([x1, x2], dim=-1)
        x_tmp = x_concat.transpose(1, 2)
        if self.lorder > 0:
            x_tmp = nn.functional.pad(x_tmp, (self.lorder, 0), "constant", 0.0)
            assert x_tmp.size(2) > self.lorder
        x_tmp = self.depthwise_conv_fusion(x_tmp)
        x_tmp = x_tmp.transpose(1, 2)
        x = x + stoch_layer_coeff * self.dropout(
            self.merge_proj(x_concat + x_tmp))

        if self.feed_forward is not None:
            # feed forward module
            residual = x
            x = self.norm_ff(x)
            x = residual + stoch_layer_coeff * self.ff_scale * self.dropout(
                self.feed_forward(x))

        x = self.norm_final(x)

        return x, mask, new_att_cache, new_cnn_cache

    def forward(
        self,
        x: torch.Tensor,
        mask: torch.Tensor,
        pos_emb: torch.Tensor,
        mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        att_cache: T_CACHE = (torch.zeros(
            (0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)),
        cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
    ) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]:
        """Compute encoded features.

        Args:
            x (Union[Tuple, torch.Tensor]): Input tensor  (#batch, time, size).
            mask (torch.Tensor): Mask tensor for the input (#batch, time, time).
            pos_emb (torch.Tensor): positional encoding, must not be None
                for BranchformerEncoderLayer.
            mask_pad (torch.Tensor): batch padding mask used for conv module.
                (#batch, 1,time), (0, 0, 0) means fake mask.
            att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
                (#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
            cnn_cache (torch.Tensor): Convolution cache in cgmlp layer
                (#batch=1, size, cache_t2)

        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time, time.
            torch.Tensor: att_cache tensor,
                (#batch=1, head, cache_t1 + time, d_k * 2).
            torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
        """

        stoch_layer_coeff = 1.0
        # with stochastic depth, residual connection `x + f(x)` becomes
        # `x <- x + 1 / (1 - p) * f(x)` at training time.
        if self.training:
            stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
        return self._forward(x, mask, pos_emb, mask_pad, att_cache, cnn_cache,
                             stoch_layer_coeff)