Merge branch 'main' of https://huggingface.co/spaces/ALM/CALM into main
Browse files- app.py +19 -13
- requirements.txt +1 -0
app.py
CHANGED
@@ -188,7 +188,7 @@ class CLIPDemo:
|
|
188 |
def compute_image_embeddings(self, image_paths: list):
|
189 |
self.image_paths = image_paths
|
190 |
dataloader = DataLoader(VisionDataset(
|
191 |
-
image_paths=image_paths), batch_size=self.batch_size
|
192 |
embeddings = []
|
193 |
with torch.no_grad():
|
194 |
|
@@ -249,17 +249,19 @@ class CLIPDemo:
|
|
249 |
def draw_text(
|
250 |
key,
|
251 |
plot=False,
|
|
|
252 |
):
|
253 |
|
|
|
254 |
image = Image.open("data/logo.png")
|
255 |
st.image(image, use_column_width="always")
|
256 |
|
257 |
if 'model' not in st.session_state:
|
258 |
#with st.spinner('We are orginizing your traks...'):
|
259 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
260 |
-
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True)
|
261 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
|
262 |
-
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
|
263 |
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:1000])
|
264 |
st.session_state["model"] = model
|
265 |
|
@@ -302,18 +304,19 @@ def draw_text(
|
|
302 |
def draw_audio(
|
303 |
key,
|
304 |
plot=False,
|
|
|
305 |
):
|
306 |
|
307 |
image = Image.open("data/logo.png")
|
308 |
st.image(image, use_column_width="always")
|
309 |
-
|
310 |
if 'model' not in st.session_state:
|
311 |
#with st.spinner('We are orginizing your traks...'):
|
312 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
313 |
-
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True)
|
314 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
|
315 |
-
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
|
316 |
-
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH+"/*.jpeg")[:
|
317 |
st.session_state["model"] = model
|
318 |
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
|
319 |
#st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
|
@@ -369,6 +372,7 @@ def draw_audio(
|
|
369 |
def draw_camera(
|
370 |
key,
|
371 |
plot=False,
|
|
|
372 |
):
|
373 |
|
374 |
image = Image.open("data/logo.png")
|
@@ -377,10 +381,10 @@ def draw_camera(
|
|
377 |
if 'model' not in st.session_state:
|
378 |
#with st.spinner('We are orginizing your traks...'):
|
379 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
380 |
-
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True)
|
381 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
|
382 |
-
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
|
383 |
-
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:
|
384 |
st.session_state["model"] = model
|
385 |
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
|
386 |
#st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
|
@@ -427,15 +431,17 @@ def draw_camera(
|
|
427 |
selected = streamlit_menu(example=3)
|
428 |
df = pd.read_csv('full_metadata.csv', index_col=False)
|
429 |
|
|
|
|
|
430 |
if selected == "Text":
|
431 |
# st.title(f"You have selected {selected}")
|
432 |
-
draw_text("text", plot=True)
|
433 |
if selected == "Audio":
|
434 |
# st.title(f"You have selected {selected}")
|
435 |
-
draw_audio("audio", plot=True)
|
436 |
if selected == "Camera":
|
437 |
# st.title(f"You have selected {selected}")
|
438 |
-
#draw_camera("camera", plot=True)
|
439 |
pass
|
440 |
|
441 |
# with st.sidebar:
|
|
|
188 |
def compute_image_embeddings(self, image_paths: list):
|
189 |
self.image_paths = image_paths
|
190 |
dataloader = DataLoader(VisionDataset(
|
191 |
+
image_paths=image_paths), batch_size=self.batch_size)
|
192 |
embeddings = []
|
193 |
with torch.no_grad():
|
194 |
|
|
|
249 |
def draw_text(
|
250 |
key,
|
251 |
plot=False,
|
252 |
+
device=None,
|
253 |
):
|
254 |
|
255 |
+
|
256 |
image = Image.open("data/logo.png")
|
257 |
st.image(image, use_column_width="always")
|
258 |
|
259 |
if 'model' not in st.session_state:
|
260 |
#with st.spinner('We are orginizing your traks...'):
|
261 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
262 |
+
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True).to(device)
|
263 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
|
264 |
+
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer, device=device)
|
265 |
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:1000])
|
266 |
st.session_state["model"] = model
|
267 |
|
|
|
304 |
def draw_audio(
|
305 |
key,
|
306 |
plot=False,
|
307 |
+
device=None,
|
308 |
):
|
309 |
|
310 |
image = Image.open("data/logo.png")
|
311 |
st.image(image, use_column_width="always")
|
312 |
+
|
313 |
if 'model' not in st.session_state:
|
314 |
#with st.spinner('We are orginizing your traks...'):
|
315 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
316 |
+
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True).to(device)
|
317 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
|
318 |
+
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer, device=device)
|
319 |
+
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH+"/*.jpeg")[:1000])
|
320 |
st.session_state["model"] = model
|
321 |
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
|
322 |
#st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
|
|
|
372 |
def draw_camera(
|
373 |
key,
|
374 |
plot=False,
|
375 |
+
device=None,
|
376 |
):
|
377 |
|
378 |
image = Image.open("data/logo.png")
|
|
|
381 |
if 'model' not in st.session_state:
|
382 |
#with st.spinner('We are orginizing your traks...'):
|
383 |
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
|
384 |
+
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True).to(device)
|
385 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
|
386 |
+
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer, device=device)
|
387 |
+
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:1000])
|
388 |
st.session_state["model"] = model
|
389 |
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
|
390 |
#st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
|
|
|
431 |
selected = streamlit_menu(example=3)
|
432 |
df = pd.read_csv('full_metadata.csv', index_col=False)
|
433 |
|
434 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
435 |
+
|
436 |
if selected == "Text":
|
437 |
# st.title(f"You have selected {selected}")
|
438 |
+
draw_text("text", plot=True, device=device)
|
439 |
if selected == "Audio":
|
440 |
# st.title(f"You have selected {selected}")
|
441 |
+
draw_audio("audio", plot=True, device=device)
|
442 |
if selected == "Camera":
|
443 |
# st.title(f"You have selected {selected}")
|
444 |
+
#draw_camera("camera", plot=True, device=device)
|
445 |
pass
|
446 |
|
447 |
# with st.sidebar:
|
requirements.txt
CHANGED
@@ -7,6 +7,7 @@ bokeh
|
|
7 |
streamlit_bokeh_events
|
8 |
streamlit-webcam-example
|
9 |
torch
|
|
|
10 |
numpy
|
11 |
pandas
|
12 |
tqdm
|
|
|
7 |
streamlit_bokeh_events
|
8 |
streamlit-webcam-example
|
9 |
torch
|
10 |
+
torchvision
|
11 |
numpy
|
12 |
pandas
|
13 |
tqdm
|