Spaces:
Running
Running
# modules/database/discourse_mongo_db.py | |
import base64 | |
import logging | |
from datetime import datetime, timezone | |
from ..database.mongo_db import get_collection, insert_document, find_documents | |
logger = logging.getLogger(__name__) | |
COLLECTION_NAME = 'student_discourse_analysis' | |
######################################################################## | |
def store_student_discourse_result(username, text1, text2, analysis_result): | |
""" | |
Guarda el resultado del análisis de discurso en MongoDB. | |
""" | |
try: | |
# Verificar que el resultado sea válido | |
if not analysis_result.get('success', False): | |
logger.error("No se puede guardar un análisis fallido") | |
return False | |
logger.info(f"Almacenando análisis de discurso para {username}") | |
# Preparar el documento para MongoDB | |
document = { | |
'username': username, | |
'timestamp': datetime.now(timezone.utc).isoformat(), | |
'text1': text1, | |
'text2': text2, | |
'key_concepts1': analysis_result.get('key_concepts1', []), | |
'key_concepts2': analysis_result.get('key_concepts2', []) | |
} | |
# Codificar gráficos a base64 para almacenamiento | |
for graph_key in ['graph1', 'graph2', 'combined_graph']: | |
if graph_key in analysis_result and analysis_result[graph_key] is not None: | |
if isinstance(analysis_result[graph_key], bytes): | |
logger.info(f"Codificando {graph_key} como base64") | |
document[graph_key] = base64.b64encode(analysis_result[graph_key]).decode('utf-8') | |
logger.info(f"{graph_key} codificado correctamente, longitud: {len(document[graph_key])}") | |
else: | |
logger.warning(f"{graph_key} no es de tipo bytes, es: {type(analysis_result[graph_key])}") | |
else: | |
logger.info(f"{graph_key} no presente en el resultado del análisis") | |
# Almacenar el documento en MongoDB | |
collection = get_collection(COLLECTION_NAME) | |
if collection is None: # CORREGIDO: Usar 'is None' en lugar de valor booleano | |
logger.error("No se pudo obtener la colección") | |
return False | |
result = collection.insert_one(document) | |
logger.info(f"Análisis de discurso guardado con ID: {result.inserted_id}") | |
return True | |
except Exception as e: | |
logger.error(f"Error guardando análisis de discurso: {str(e)}") | |
return False | |
################################################################################# | |
# Corrección 1: Actualizar get_student_discourse_analysis para recuperar todos los campos necesarios | |
def get_student_discourse_analysis(username, limit=10): | |
""" | |
Recupera los análisis del discurso de un estudiante. | |
""" | |
try: | |
logger.info(f"Recuperando análisis de discurso para {username}") | |
collection = get_collection(COLLECTION_NAME) | |
if collection is None: | |
logger.error("No se pudo obtener la colección") | |
return [] | |
query = {"username": username} | |
documents = list(collection.find(query).sort("timestamp", -1).limit(limit)) | |
logger.info(f"Recuperados {len(documents)} documentos de análisis de discurso") | |
# Decodificar gráficos para uso en la aplicación | |
for doc in documents: | |
for graph_key in ['graph1', 'graph2', 'combined_graph']: | |
if graph_key in doc and doc[graph_key]: | |
try: | |
# Verificar si es string (base64) y decodificar | |
if isinstance(doc[graph_key], str): | |
logger.info(f"Decodificando {graph_key} de base64 a bytes") | |
doc[graph_key] = base64.b64decode(doc[graph_key]) | |
logger.info(f"{graph_key} decodificado correctamente, tamaño: {len(doc[graph_key])} bytes") | |
elif not isinstance(doc[graph_key], bytes): | |
logger.warning(f"{graph_key} no es ni string ni bytes: {type(doc[graph_key])}") | |
except Exception as decode_error: | |
logger.error(f"Error decodificando {graph_key}: {str(decode_error)}") | |
doc[graph_key] = None | |
return documents | |
except Exception as e: | |
logger.error(f"Error recuperando análisis de discurso: {str(e)}") | |
return [] | |
##################################################################################### | |
def get_student_discourse_data(username): | |
""" | |
Obtiene un resumen de los análisis del discurso de un estudiante. | |
""" | |
try: | |
analyses = get_student_discourse_analysis(username, limit=None) | |
formatted_analyses = [] | |
for analysis in analyses: | |
formatted_analysis = { | |
'timestamp': analysis['timestamp'], | |
'text1': analysis.get('text1', ''), | |
'text2': analysis.get('text2', ''), | |
'key_concepts1': analysis.get('key_concepts1', []), | |
'key_concepts2': analysis.get('key_concepts2', []) | |
} | |
formatted_analyses.append(formatted_analysis) | |
return {'entries': formatted_analyses} | |
except Exception as e: | |
logger.error(f"Error al obtener datos del discurso: {str(e)}") | |
return {'entries': []} | |
########################################################################### | |
def update_student_discourse_analysis(analysis_id, update_data): | |
""" | |
Actualiza un análisis del discurso existente. | |
""" | |
try: | |
query = {"_id": analysis_id} | |
update = {"$set": update_data} | |
return update_document(COLLECTION_NAME, query, update) | |
except Exception as e: | |
logger.error(f"Error al actualizar análisis del discurso: {str(e)}") | |
return False | |
########################################################################### | |
def delete_student_discourse_analysis(analysis_id): | |
""" | |
Elimina un análisis del discurso. | |
""" | |
try: | |
query = {"_id": analysis_id} | |
return delete_document(COLLECTION_NAME, query) | |
except Exception as e: | |
logger.error(f"Error al eliminar análisis del discurso: {str(e)}") | |
return False |