Spaces:
Running
Running
############## | |
###modules/studentact/student_activities_v2.py | |
import streamlit as st | |
import re | |
import io | |
from io import BytesIO | |
import pandas as pd | |
import numpy as np | |
import time | |
import matplotlib.pyplot as plt | |
from datetime import datetime, timedelta | |
from spacy import displacy | |
import random | |
import base64 | |
import seaborn as sns | |
import logging | |
# Importaciones de la base de datos | |
from ..database.morphosintax_mongo_db import get_student_morphosyntax_analysis | |
from ..database.semantic_mongo_db import get_student_semantic_analysis | |
from ..database.discourse_mongo_db import get_student_discourse_analysis | |
from ..database.chat_mongo_db import get_chat_history | |
from ..database.current_situation_mongo_db import get_current_situation_analysis | |
from ..database.claude_recommendations_mongo_db import get_claude_recommendations | |
# Importar la función generate_unique_key | |
from ..utils.widget_utils import generate_unique_key | |
logger = logging.getLogger(__name__) | |
################################################################################### | |
def display_student_activities(username: str, lang_code: str, t: dict): | |
""" | |
Muestra todas las actividades del estudiante | |
Args: | |
username: Nombre del estudiante | |
lang_code: Código del idioma | |
t: Diccionario de traducciones | |
""" | |
try: | |
st.header(t.get('activities_title', 'Mis Actividades')) | |
# Tabs para diferentes tipos de análisis | |
tabs = st.tabs([ | |
t.get('current_situation_activities', 'Mi Situación Actual'), | |
t.get('morpho_activities', 'Análisis Morfosintáctico'), | |
t.get('semantic_activities', 'Análisis Semántico'), | |
t.get('discourse_activities', 'Análisis del Discurso'), | |
t.get('chat_activities', 'Conversaciones con el Asistente') | |
]) | |
# Tab de Situación Actual | |
with tabs[0]: | |
display_current_situation_activities(username, t) | |
# Tab de Análisis Morfosintáctico | |
with tabs[1]: | |
display_morphosyntax_activities(username, t) | |
# Tab de Análisis Semántico | |
with tabs[2]: | |
display_semantic_activities(username, t) | |
# Tab de Análisis del Discurso | |
with tabs[3]: | |
display_discourse_activities(username, t) | |
# Tab de Conversaciones del Chat | |
with tabs[4]: | |
display_chat_activities(username, t) | |
except Exception as e: | |
logger.error(f"Error mostrando actividades: {str(e)}") | |
st.error(t.get('error_loading_activities', 'Error al cargar las actividades')) | |
############################################################################################### | |
def display_current_situation_activities(username: str, t: dict): | |
""" | |
Muestra análisis de situación actual junto con las recomendaciones de Claude | |
unificando la información de ambas colecciones y emparejándolas por cercanía temporal. | |
""" | |
try: | |
# Recuperar datos de ambas colecciones | |
logger.info(f"Recuperando análisis de situación actual para {username}") | |
situation_analyses = get_current_situation_analysis(username, limit=10) | |
# Verificar si hay datos | |
if situation_analyses: | |
logger.info(f"Recuperados {len(situation_analyses)} análisis de situación") | |
# Depurar para ver la estructura de datos | |
for i, analysis in enumerate(situation_analyses): | |
logger.info(f"Análisis #{i+1}: Claves disponibles: {list(analysis.keys())}") | |
if 'metrics' in analysis: | |
logger.info(f"Métricas disponibles: {list(analysis['metrics'].keys())}") | |
else: | |
logger.warning("No se encontraron análisis de situación actual") | |
logger.info(f"Recuperando recomendaciones de Claude para {username}") | |
claude_recommendations = get_claude_recommendations(username) | |
if claude_recommendations: | |
logger.info(f"Recuperadas {len(claude_recommendations)} recomendaciones de Claude") | |
else: | |
logger.warning("No se encontraron recomendaciones de Claude") | |
# Verificar si hay algún tipo de análisis disponible | |
if not situation_analyses and not claude_recommendations: | |
logger.info("No se encontraron análisis de situación actual ni recomendaciones") | |
st.info(t.get('no_current_situation', 'No hay análisis de situación actual registrados')) | |
return | |
# Crear pares combinados emparejando diagnósticos y recomendaciones cercanos en tiempo | |
logger.info("Creando emparejamientos temporales de análisis") | |
# Convertir timestamps a objetos datetime para comparación | |
situation_times = [] | |
for analysis in situation_analyses: | |
if 'timestamp' in analysis: | |
try: | |
timestamp_str = analysis['timestamp'] | |
dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00')) | |
situation_times.append((dt, analysis)) | |
except Exception as e: | |
logger.error(f"Error parseando timestamp de situación: {str(e)}") | |
recommendation_times = [] | |
for recommendation in claude_recommendations: | |
if 'timestamp' in recommendation: | |
try: | |
timestamp_str = recommendation['timestamp'] | |
dt = datetime.fromisoformat(timestamp_str.replace('Z', '+00:00')) | |
recommendation_times.append((dt, recommendation)) | |
except Exception as e: | |
logger.error(f"Error parseando timestamp de recomendación: {str(e)}") | |
# Ordenar por tiempo | |
situation_times.sort(key=lambda x: x[0], reverse=True) | |
recommendation_times.sort(key=lambda x: x[0], reverse=True) | |
# Crear pares combinados | |
combined_items = [] | |
# Primero, procesar todas las situaciones encontrando la recomendación más cercana | |
for sit_time, situation in situation_times: | |
# Buscar la recomendación más cercana en tiempo | |
best_match = None | |
min_diff = timedelta(minutes=30) # Máxima diferencia de tiempo aceptable (30 minutos) | |
best_rec_time = None | |
for rec_time, recommendation in recommendation_times: | |
time_diff = abs(sit_time - rec_time) | |
if time_diff < min_diff: | |
min_diff = time_diff | |
best_match = recommendation | |
best_rec_time = rec_time | |
# Crear un elemento combinado | |
if best_match: | |
timestamp_key = sit_time.isoformat() | |
combined_items.append((timestamp_key, { | |
'situation': situation, | |
'recommendation': best_match, | |
'time_diff': min_diff.total_seconds() | |
})) | |
# Eliminar la recomendación usada para no reutilizarla | |
recommendation_times = [(t, r) for t, r in recommendation_times if t != best_rec_time] | |
logger.info(f"Emparejado: Diagnóstico {sit_time} con Recomendación {best_rec_time} (diferencia: {min_diff})") | |
else: | |
# Si no hay recomendación cercana, solo incluir la situación | |
timestamp_key = sit_time.isoformat() | |
combined_items.append((timestamp_key, { | |
'situation': situation | |
})) | |
logger.info(f"Sin emparejar: Diagnóstico {sit_time} sin recomendación cercana") | |
# Agregar recomendaciones restantes sin situación | |
for rec_time, recommendation in recommendation_times: | |
timestamp_key = rec_time.isoformat() | |
combined_items.append((timestamp_key, { | |
'recommendation': recommendation | |
})) | |
logger.info(f"Sin emparejar: Recomendación {rec_time} sin diagnóstico cercano") | |
# Ordenar por tiempo (más reciente primero) | |
combined_items.sort(key=lambda x: x[0], reverse=True) | |
logger.info(f"Procesando {len(combined_items)} elementos combinados") | |
# Mostrar cada par combinado | |
for i, (timestamp_key, analysis_pair) in enumerate(combined_items): | |
try: | |
# Obtener datos de situación y recomendación | |
situation_data = analysis_pair.get('situation', {}) | |
recommendation_data = analysis_pair.get('recommendation', {}) | |
time_diff = analysis_pair.get('time_diff') | |
# Si no hay ningún dato, continuar al siguiente | |
if not situation_data and not recommendation_data: | |
continue | |
# Determinar qué texto mostrar (priorizar el de la situación) | |
text_to_show = situation_data.get('text', recommendation_data.get('text', '')) | |
text_type = situation_data.get('text_type', recommendation_data.get('text_type', '')) | |
# Formatear fecha para mostrar | |
try: | |
# Usar timestamp del key que ya es un formato ISO | |
dt = datetime.fromisoformat(timestamp_key) | |
formatted_date = dt.strftime("%d/%m/%Y %H:%M:%S") | |
except Exception as date_error: | |
logger.error(f"Error formateando fecha: {str(date_error)}") | |
formatted_date = timestamp_key | |
# Determinar el título del expander | |
title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}" | |
if text_type: | |
text_type_display = { | |
'academic_article': t.get('academic_article', 'Artículo académico'), | |
'student_essay': t.get('student_essay', 'Trabajo universitario'), | |
'general_communication': t.get('general_communication', 'Comunicación general') | |
}.get(text_type, text_type) | |
title += f" - {text_type_display}" | |
# Añadir indicador de emparejamiento si existe | |
if time_diff is not None: | |
if time_diff < 60: # menos de un minuto | |
title += f" 🔄 (emparejados)" | |
else: | |
title += f" 🔄 (emparejados, diferencia: {int(time_diff//60)} min)" | |
# Usar un ID único para cada expander | |
expander_id = f"analysis_{i}_{timestamp_key.replace(':', '_')}" | |
# Mostrar el análisis en un expander | |
with st.expander(title, expanded=False): | |
# Mostrar texto analizado con key único | |
st.subheader(t.get('analyzed_text', 'Texto analizado')) | |
st.text_area( | |
"Text Content", | |
value=text_to_show, | |
height=100, | |
disabled=True, | |
label_visibility="collapsed", | |
key=f"text_area_{expander_id}" | |
) | |
# Crear tabs para separar diagnóstico y recomendaciones | |
diagnosis_tab, recommendations_tab = st.tabs([ | |
t.get('diagnosis_tab', 'Diagnóstico'), | |
t.get('recommendations_tab', 'Recomendaciones') | |
]) | |
# Tab de diagnóstico | |
with diagnosis_tab: | |
if situation_data and 'metrics' in situation_data: | |
metrics = situation_data['metrics'] | |
# Dividir en dos columnas | |
col1, col2 = st.columns(2) | |
# Principales métricas en formato de tarjetas | |
with col1: | |
st.subheader(t.get('key_metrics', 'Métricas clave')) | |
# Mostrar cada métrica principal | |
for metric_name, metric_data in metrics.items(): | |
try: | |
# Determinar la puntuación | |
score = None | |
if isinstance(metric_data, dict): | |
# Intentar diferentes nombres de campo | |
if 'normalized_score' in metric_data: | |
score = metric_data['normalized_score'] | |
elif 'score' in metric_data: | |
score = metric_data['score'] | |
elif 'value' in metric_data: | |
score = metric_data['value'] | |
elif isinstance(metric_data, (int, float)): | |
score = metric_data | |
if score is not None: | |
# Asegurarse de que score es numérico | |
if isinstance(score, (int, float)): | |
# Determinar color y emoji basado en la puntuación | |
if score < 0.5: | |
emoji = "🔴" | |
color = "#ffcccc" # light red | |
elif score < 0.75: | |
emoji = "🟡" | |
color = "#ffffcc" # light yellow | |
else: | |
emoji = "🟢" | |
color = "#ccffcc" # light green | |
# Mostrar la métrica con estilo | |
st.markdown(f""" | |
<div style="background-color:{color}; padding:10px; border-radius:5px; margin-bottom:10px;"> | |
<b>{emoji} {metric_name.capitalize()}:</b> {score:.2f} | |
</div> | |
""", unsafe_allow_html=True) | |
else: | |
# Si no es numérico, mostrar como texto | |
st.markdown(f""" | |
<div style="background-color:#f0f0f0; padding:10px; border-radius:5px; margin-bottom:10px;"> | |
<b>ℹ️ {metric_name.capitalize()}:</b> {str(score)} | |
</div> | |
""", unsafe_allow_html=True) | |
except Exception as e: | |
logger.error(f"Error procesando métrica {metric_name}: {str(e)}") | |
# Mostrar detalles adicionales si están disponibles | |
with col2: | |
st.subheader(t.get('details', 'Detalles')) | |
# Para cada métrica, mostrar sus detalles si existen | |
for metric_name, metric_data in metrics.items(): | |
try: | |
if isinstance(metric_data, dict): | |
# Mostrar detalles directamente o buscar en subcampos | |
details = None | |
if 'details' in metric_data and metric_data['details']: | |
details = metric_data['details'] | |
else: | |
# Crear un diccionario con los detalles excluyendo 'normalized_score' y similares | |
details = {k: v for k, v in metric_data.items() | |
if k not in ['normalized_score', 'score', 'value']} | |
if details: | |
st.write(f"**{metric_name.capitalize()}**") | |
st.json(details, expanded=False) | |
except Exception as e: | |
logger.error(f"Error mostrando detalles de {metric_name}: {str(e)}") | |
else: | |
st.info(t.get('no_diagnosis', 'No hay datos de diagnóstico disponibles')) | |
# Tab de recomendaciones | |
with recommendations_tab: | |
if recommendation_data and 'recommendations' in recommendation_data: | |
st.markdown(f""" | |
<div style="padding: 20px; border-radius: 10px; | |
background-color: #f8f9fa; margin-bottom: 20px;"> | |
{recommendation_data['recommendations']} | |
</div> | |
""", unsafe_allow_html=True) | |
elif recommendation_data and 'feedback' in recommendation_data: | |
st.markdown(f""" | |
<div style="padding: 20px; border-radius: 10px; | |
background-color: #f8f9fa; margin-bottom: 20px;"> | |
{recommendation_data['feedback']} | |
</div> | |
""", unsafe_allow_html=True) | |
else: | |
st.info(t.get('no_recommendations', 'No hay recomendaciones disponibles')) | |
except Exception as e: | |
logger.error(f"Error procesando par de análisis: {str(e)}") | |
continue | |
except Exception as e: | |
logger.error(f"Error mostrando actividades de situación actual: {str(e)}") | |
st.error(t.get('error_current_situation', 'Error al mostrar análisis de situación actual')) | |
############################################################################################### | |
def display_morphosyntax_activities(username: str, t: dict): | |
"""Muestra actividades de análisis morfosintáctico""" | |
try: | |
analyses = get_student_morphosyntax_analysis(username) | |
if not analyses: | |
st.info(t.get('no_morpho_analyses', 'No hay análisis morfosintácticos registrados')) | |
return | |
for analysis in analyses: | |
with st.expander( | |
f"{t.get('analysis_date', 'Fecha')}: {analysis['timestamp']}", | |
expanded=False | |
): | |
st.text(f"{t.get('analyzed_text', 'Texto analizado')}:") | |
st.write(analysis['text']) | |
if 'arc_diagrams' in analysis: | |
st.subheader(t.get('syntactic_diagrams', 'Diagramas sintácticos')) | |
for diagram in analysis['arc_diagrams']: | |
st.write(diagram, unsafe_allow_html=True) | |
except Exception as e: | |
logger.error(f"Error mostrando análisis morfosintáctico: {str(e)}") | |
st.error(t.get('error_morpho', 'Error al mostrar análisis morfosintáctico')) | |
############################################################################################### | |
def display_semantic_activities(username: str, t: dict): | |
"""Muestra actividades de análisis semántico""" | |
try: | |
logger.info(f"Recuperando análisis semántico para {username}") | |
analyses = get_student_semantic_analysis(username) | |
if not analyses: | |
logger.info("No se encontraron análisis semánticos") | |
st.info(t.get('no_semantic_analyses', 'No hay análisis semánticos registrados')) | |
return | |
logger.info(f"Procesando {len(analyses)} análisis semánticos") | |
for analysis in analyses: | |
try: | |
# Verificar campos necesarios | |
if not all(key in analysis for key in ['timestamp', 'concept_graph']): | |
logger.warning(f"Análisis incompleto: {analysis.keys()}") | |
continue | |
# Formatear fecha | |
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) | |
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") | |
# Crear expander | |
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): | |
# Procesar y mostrar gráfico | |
if analysis.get('concept_graph'): | |
try: | |
# Convertir de base64 a bytes | |
logger.debug("Decodificando gráfico de conceptos") | |
image_data = analysis['concept_graph'] | |
# Si el gráfico ya es bytes, usarlo directamente | |
if isinstance(image_data, bytes): | |
image_bytes = image_data | |
else: | |
# Si es string base64, decodificar | |
image_bytes = base64.b64decode(image_data) | |
logger.debug(f"Longitud de bytes de imagen: {len(image_bytes)}") | |
# Mostrar imagen | |
st.image( | |
image_bytes, | |
caption=t.get('concept_network', 'Red de Conceptos'), | |
use_column_width=True | |
) | |
logger.debug("Gráfico mostrado exitosamente") | |
except Exception as img_error: | |
logger.error(f"Error procesando gráfico: {str(img_error)}") | |
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) | |
else: | |
st.info(t.get('no_graph', 'No hay visualización disponible')) | |
except Exception as e: | |
logger.error(f"Error procesando análisis individual: {str(e)}") | |
continue | |
except Exception as e: | |
logger.error(f"Error mostrando análisis semántico: {str(e)}") | |
st.error(t.get('error_semantic', 'Error al mostrar análisis semántico')) | |
################################################################################################### | |
def display_discourse_activities(username: str, t: dict): | |
"""Muestra actividades de análisis del discurso""" | |
try: | |
logger.info(f"Recuperando análisis del discurso para {username}") | |
analyses = get_student_discourse_analysis(username) | |
if not analyses: | |
logger.info("No se encontraron análisis del discurso") | |
st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados')) | |
return | |
logger.info(f"Procesando {len(analyses)} análisis del discurso") | |
for analysis in analyses: | |
try: | |
# Verificar campos mínimos necesarios | |
if not all(key in analysis for key in ['timestamp', 'combined_graph']): | |
logger.warning(f"Análisis incompleto: {analysis.keys()}") | |
continue | |
# Formatear fecha | |
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00')) | |
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") | |
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False): | |
if analysis['combined_graph']: | |
logger.debug("Decodificando gráfico combinado") | |
try: | |
image_bytes = base64.b64decode(analysis['combined_graph']) | |
st.image(image_bytes, use_column_width=True) | |
logger.debug("Gráfico mostrado exitosamente") | |
except Exception as img_error: | |
logger.error(f"Error decodificando imagen: {str(img_error)}") | |
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico')) | |
else: | |
st.info(t.get('no_visualization', 'No hay visualización comparativa disponible')) | |
except Exception as e: | |
logger.error(f"Error procesando análisis individual: {str(e)}") | |
continue | |
except Exception as e: | |
logger.error(f"Error mostrando análisis del discurso: {str(e)}") | |
st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso')) | |
################################################################################# | |
def display_chat_activities(username: str, t: dict): | |
""" | |
Muestra historial de conversaciones del chat | |
""" | |
try: | |
# Obtener historial del chat | |
chat_history = get_chat_history( | |
username=username, | |
analysis_type='sidebar', | |
limit=50 | |
) | |
if not chat_history: | |
st.info(t.get('no_chat_history', 'No hay conversaciones registradas')) | |
return | |
for chat in reversed(chat_history): # Mostrar las más recientes primero | |
try: | |
# Convertir timestamp a datetime para formato | |
timestamp = datetime.fromisoformat(chat['timestamp'].replace('Z', '+00:00')) | |
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S") | |
with st.expander( | |
f"{t.get('chat_date', 'Fecha de conversación')}: {formatted_date}", | |
expanded=False | |
): | |
if 'messages' in chat and chat['messages']: | |
# Mostrar cada mensaje en la conversación | |
for message in chat['messages']: | |
role = message.get('role', 'unknown') | |
content = message.get('content', '') | |
# Usar el componente de chat de Streamlit | |
with st.chat_message(role): | |
st.markdown(content) | |
# Agregar separador entre mensajes | |
st.divider() | |
else: | |
st.warning(t.get('invalid_chat_format', 'Formato de chat no válido')) | |
except Exception as e: | |
logger.error(f"Error mostrando conversación: {str(e)}") | |
continue | |
except Exception as e: | |
logger.error(f"Error mostrando historial del chat: {str(e)}") | |
st.error(t.get('error_chat', 'Error al mostrar historial del chat')) | |
################################################################################# | |
def display_discourse_comparison(analysis: dict, t: dict): | |
"""Muestra la comparación de análisis del discurso""" | |
st.subheader(t.get('comparison_results', 'Resultados de la comparación')) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**") | |
df1 = pd.DataFrame(analysis['key_concepts1']) | |
st.dataframe(df1) | |
with col2: | |
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**") | |
df2 = pd.DataFrame(analysis['key_concepts2']) | |
st.dataframe(df2) |