Spaces:
Running
Running
import streamlit as st | |
from streamlit_float import * | |
from streamlit_antd_components import * | |
from streamlit.components.v1 import html | |
import spacy | |
from spacy import displacy | |
import spacy_streamlit | |
import pandas as pd | |
import base64 | |
import re | |
from .morphosyntax_process import ( | |
process_morphosyntactic_input, | |
format_analysis_results, | |
perform_advanced_morphosyntactic_analysis, | |
get_repeated_words_colors, | |
highlight_repeated_words, | |
POS_COLORS, | |
POS_TRANSLATIONS | |
) | |
from ..utils.widget_utils import generate_unique_key | |
from ..database.morphosintax_mongo_db import store_student_morphosyntax_result | |
from ..database.chat_mongo_db import store_chat_history, get_chat_history | |
import logging | |
logger = logging.getLogger(__name__) | |
def display_morphosyntax_interface(lang_code, nlp_models, morpho_t): | |
try: | |
# CSS para mejorar la estabilidad y prevenir saltos | |
st.markdown(""" | |
<style> | |
.stTextArea textarea { | |
font-size: 1rem; | |
line-height: 1.5; | |
resize: vertical; | |
} | |
.block-container { | |
padding-top: 1rem; | |
padding-bottom: 1rem; | |
} | |
.stExpander { | |
border: none; | |
box-shadow: 0 1px 2px rgba(0,0,0,0.1); | |
margin-bottom: 1rem; | |
} | |
.legend-container { | |
position: sticky; | |
top: 0; | |
background: white; | |
z-index: 100; | |
padding: 0.5rem 0; | |
border-bottom: 1px solid #eee; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# 1. Inicializar el estado | |
if 'morphosyntax_state' not in st.session_state: | |
st.session_state.morphosyntax_state = { | |
'input_text': "", | |
'analysis_count': 0, | |
'last_analysis': None, | |
'current_tab': 0 | |
} | |
# 2. Contenedor principal con diseño sticky | |
with st.container(): | |
# Campo de entrada de texto | |
input_key = f"morpho_input_{st.session_state.morphosyntax_state['analysis_count']}" | |
sentence_input = st.text_area( | |
morpho_t.get('morpho_input_label', 'Enter text to analyze'), | |
height=150, | |
placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...'), | |
key=input_key, | |
on_change=lambda: None # Previene recargas innecesarias | |
) | |
# 3. Botón de análisis centrado | |
col1, col2, col3 = st.columns([2,1,2]) | |
with col1: | |
analyze_button = st.button( | |
morpho_t.get('morpho_analyze_button', 'Analyze Morphosyntax'), | |
key=f"morpho_button_{st.session_state.morphosyntax_state['analysis_count']}", | |
type="primary", | |
icon="🔍", | |
disabled=not bool(sentence_input.strip()), | |
use_container_width=True | |
) | |
# 4. Procesar análisis | |
if analyze_button and sentence_input.strip(): | |
try: | |
with st.spinner(morpho_t.get('processing', 'Processing...')): | |
doc = nlp_models[lang_code](sentence_input) | |
advanced_analysis = perform_advanced_morphosyntactic_analysis( | |
sentence_input, | |
nlp_models[lang_code] | |
) | |
st.session_state.morphosyntax_result = { | |
'doc': doc, | |
'advanced_analysis': advanced_analysis | |
} | |
st.session_state.morphosyntax_state['analysis_count'] += 1 | |
# Guardar resultado | |
if store_student_morphosyntax_result( | |
username=st.session_state.username, | |
text=sentence_input, | |
arc_diagrams=advanced_analysis['arc_diagrams'] | |
): | |
st.success(morpho_t.get('success_message', 'Analysis saved successfully')) | |
st.session_state.morphosyntax_state['current_tab'] = 0 | |
display_morphosyntax_results( | |
st.session_state.morphosyntax_result, | |
lang_code, | |
morpho_t | |
) | |
else: | |
st.error(morpho_t.get('error_message', 'Error saving analysis')) | |
except Exception as e: | |
logger.error(f"Error en análisis morfosintáctico: {str(e)}") | |
st.error(morpho_t.get('error_processing', f'Error processing text: {str(e)}')) | |
# 5. Mostrar resultados previos | |
elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result: | |
display_morphosyntax_results( | |
st.session_state.morphosyntax_result, | |
lang_code, | |
morpho_t | |
) | |
elif not sentence_input.strip(): | |
st.info(morpho_t.get('morpho_initial_message', 'Enter text to begin analysis')) | |
except Exception as e: | |
logger.error(f"Error general en display_morphosyntax_interface: {str(e)}") | |
st.error("Se produjo un error. Por favor, intente de nuevo.") | |
def display_morphosyntax_results(result, lang_code, morpho_t): | |
if result is None: | |
st.warning(morpho_t.get('no_results', 'No results available')) | |
return | |
doc = result['doc'] | |
advanced_analysis = result['advanced_analysis'] | |
# Leyenda fija en la parte superior | |
with st.container(): | |
st.markdown(f"##### {morpho_t.get('legend', 'Legend: Grammatical categories')}") | |
legend_html = "<div class='legend-container'><div style='display: flex; flex-wrap: wrap;'>" | |
for pos, color in POS_COLORS.items(): | |
if pos in POS_TRANSLATIONS[lang_code]: | |
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>" | |
legend_html += "</div></div>" | |
st.markdown(legend_html, unsafe_allow_html=True) | |
# Palabras repetidas | |
with st.expander(morpho_t.get('repeated_words', 'Repeated words'), expanded=True): | |
word_colors = get_repeated_words_colors(doc) | |
highlighted_text = highlight_repeated_words(doc, word_colors) | |
st.markdown(highlighted_text, unsafe_allow_html=True) | |
# Análisis sintáctico (diagramas de arco) | |
with st.expander(morpho_t.get('arc_diagram', 'Syntactic analysis: Arc diagram'), expanded=True): | |
sentences = list(doc.sents) | |
for i, sent in enumerate(sentences): | |
st.subheader(f"{morpho_t.get('sentence', 'Sentence')} {i+1}") | |
html = displacy.render(sent, style="dep", options={"distance": 100}) | |
html = html.replace('height="375"', 'height="200"') | |
html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) | |
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', | |
lambda m: f'<g transform="translate({m.group(1)},50)"', html) | |
st.write(html, unsafe_allow_html=True) | |
# Estructura de oraciones | |
with st.expander(morpho_t.get('sentence_structure', 'Sentence structure'), expanded=True): | |
for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): | |
sentence_str = ( | |
f"**{morpho_t.get('sentence', 'Sentence')} {i+1}** " | |
f"{morpho_t.get('root', 'Root')}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " | |
f"{morpho_t.get('subjects', 'Subjects')}: {', '.join(sent_analysis['subjects'])} -- " | |
f"{morpho_t.get('objects', 'Objects')}: {', '.join(sent_analysis['objects'])} -- " | |
f"{morpho_t.get('verbs', 'Verbs')}: {', '.join(sent_analysis['verbs'])}" | |
) | |
st.markdown(sentence_str) | |
# Análisis de categorías gramaticales | |
with st.expander(morpho_t.get('pos_analysis', 'Part of speech'), expanded=True): | |
pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) | |
pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) | |
pos_df = pos_df.rename(columns={ | |
'pos': morpho_t.get('grammatical_category', 'Grammatical category'), | |
'count': morpho_t.get('count', 'Count'), | |
'percentage': morpho_t.get('percentage', 'Percentage'), | |
'examples': morpho_t.get('examples', 'Examples') | |
}) | |
st.dataframe(pos_df, use_container_width=True) | |
# Análisis morfológico | |
with st.expander(morpho_t.get('morphological_analysis', 'Morphological Analysis'), expanded=True): | |
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) | |
column_mapping = { | |
'text': morpho_t.get('word', 'Word'), | |
'lemma': morpho_t.get('lemma', 'Lemma'), | |
'pos': morpho_t.get('grammatical_category', 'Grammatical category'), | |
'dep': morpho_t.get('dependency', 'Dependency'), | |
'morph': morpho_t.get('morphology', 'Morphology') | |
} | |
morph_df = morph_df.rename(columns=column_mapping) | |
# Traducir categorías gramaticales | |
grammatical_category = morpho_t.get('grammatical_category', 'Grammatical category') | |
morph_df[grammatical_category] = morph_df[grammatical_category].map( | |
lambda x: POS_TRANSLATIONS[lang_code].get(x, x) | |
) | |
# Aplicar traducciones de dependencias y morfología | |
dependency = morpho_t.get('dependency', 'Dependency') | |
morphology = morpho_t.get('morphology', 'Morphology') | |
def translate_morph(morph_string, lang_code): | |
for key, value in morph_translations[lang_code].items(): | |
morph_string = morph_string.replace(key, value) | |
return morph_string | |
morph_df[dependency] = morph_df[dependency].map( | |
lambda x: dep_translations[lang_code].get(x, x) | |
) | |
morph_df[morphology] = morph_df[morphology].apply( | |
lambda x: translate_morph(x, lang_code) | |
) | |
st.dataframe(morph_df, use_container_width=True) |