Spaces:
Running
Running
#modules/semantic/semantic_interface.py | |
import streamlit as st | |
from streamlit_float import * | |
from streamlit_antd_components import * | |
from streamlit.components.v1 import html | |
import spacy_streamlit | |
import io | |
from io import BytesIO | |
import base64 | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import re | |
import logging | |
# Configuración del logger | |
logger = logging.getLogger(__name__) | |
# Importaciones locales | |
from .semantic_process import ( | |
process_semantic_input, | |
format_semantic_results | |
) | |
from ..utils.widget_utils import generate_unique_key | |
from ..database.semantic_mongo_db import store_student_semantic_result | |
from ..database.semantic_export import export_user_interactions | |
def display_semantic_interface(lang_code, nlp_models, semantic_t): | |
""" | |
Interfaz para el análisis semántico con controles alineados horizontalmente | |
""" | |
# Forzar la página a semántico | |
st.session_state.page = 'semantic' | |
# Inicializar estados básicos | |
if 'semantic_content' not in st.session_state: | |
st.session_state.semantic_content = None | |
if 'semantic_analyzed' not in st.session_state: | |
st.session_state.semantic_analyzed = False | |
# Contenedor principal | |
with st.container(): | |
# Una sola fila para todos los controles | |
cols = st.columns([4, 2, 2, 2]) | |
# Columna 1: Carga de archivo | |
with cols[0]: | |
uploaded_file = st.file_uploader( | |
"Upload text file", # Simplificamos el mensaje | |
type=['txt'], | |
key="semantic_file_upload" | |
) | |
# Columna 2: Botón de análisis | |
with cols[1]: | |
can_analyze = uploaded_file is not None and not st.session_state.semantic_analyzed | |
if st.button('Analyze', | |
disabled=not can_analyze, | |
key="semantic_analyze"): | |
if uploaded_file: | |
text_content = uploaded_file.getvalue().decode('utf-8') | |
# Realizar el análisis | |
with st.spinner("Analyzing..."): | |
analysis_result = process_semantic_input( | |
text_content, | |
lang_code, | |
nlp_models, | |
semantic_t | |
) | |
if analysis_result['success']: | |
st.session_state.semantic_result = analysis_result | |
st.session_state.semantic_analyzed = True | |
st.success("Analysis completed!") | |
# Mostrar resultados | |
display_semantic_results( | |
analysis_result, | |
lang_code, | |
semantic_t | |
) | |
# Columna 3: Botón de exportación | |
with cols[2]: | |
if st.button('Export', | |
disabled=not st.session_state.semantic_analyzed, | |
key="semantic_export"): | |
if st.session_state.semantic_analyzed: | |
try: | |
pdf_buffer = export_user_interactions( | |
st.session_state.username, | |
'semantic' | |
) | |
st.download_button( | |
"Download PDF", | |
data=pdf_buffer, | |
file_name="semantic_analysis.pdf", | |
mime="application/pdf" | |
) | |
except Exception as e: | |
st.error(f"Error exporting: {str(e)}") | |
# Columna 4: Botón de nuevo análisis | |
with cols[3]: | |
if st.button('New Analysis', | |
disabled=not st.session_state.semantic_analyzed, | |
key="semantic_new"): | |
st.session_state.semantic_content = None | |
st.session_state.semantic_analyzed = False | |
st.session_state.semantic_result = None | |
st.rerun() | |
# Mostrar resultados si existen | |
if st.session_state.semantic_analyzed and 'semantic_result' in st.session_state: | |
display_semantic_results( | |
st.session_state.semantic_result, | |
lang_code, | |
semantic_t | |
) | |
elif not uploaded_file: | |
st.info("Please upload a text file to begin analysis") | |
def display_semantic_results(result, lang_code, semantic_t): | |
""" | |
Muestra los resultados del análisis semántico | |
""" | |
if result is None or not result['success']: | |
st.warning(semantic_t.get('no_results', 'No results available')) | |
return | |
analysis = result['analysis'] | |
# Crear tabs para los resultados | |
tab1, tab2 = st.tabs([ | |
semantic_t.get('concepts_tab', 'Key Concepts Analysis'), | |
semantic_t.get('entities_tab', 'Entities Analysis') | |
]) | |
# Tab 1: Conceptos Clave | |
with tab1: | |
col1, col2 = st.columns(2) | |
# Columna 1: Lista de conceptos | |
with col1: | |
st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) | |
concept_text = "\n".join([ | |
f"• {concept} ({frequency:.2f})" | |
for concept, frequency in analysis['key_concepts'] | |
]) | |
st.markdown(concept_text) | |
# Columna 2: Gráfico de conceptos | |
with col2: | |
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph')) | |
st.image(analysis['concept_graph']) | |
# Tab 2: Entidades | |
with tab2: | |
col1, col2 = st.columns(2) | |
# Columna 1: Lista de entidades | |
with col1: | |
st.subheader(semantic_t.get('identified_entities', 'Identified Entities')) | |
if 'entities' in analysis: | |
for entity_type, entities in analysis['entities'].items(): | |
st.markdown(f"**{entity_type}**") | |
st.markdown("• " + "\n• ".join(entities)) | |
# Columna 2: Gráfico de entidades | |
with col2: | |
st.subheader(semantic_t.get('entity_graph', 'Entities Graph')) | |
st.image(analysis['entity_graph']) |