Spaces:
Running
Running
#modules/semantic/semantic_interface.py | |
import streamlit as st | |
from streamlit_float import * | |
from streamlit_antd_components import * | |
from streamlit.components.v1 import html | |
import spacy_streamlit | |
import io | |
from io import BytesIO | |
import base64 | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import re | |
import logging | |
# Configuración del logger | |
logger = logging.getLogger(__name__) | |
# Importaciones locales | |
from .semantic_process import ( | |
process_semantic_input, | |
format_semantic_results | |
) | |
from ..utils.widget_utils import generate_unique_key | |
from ..database.semantic_mongo_db import store_student_semantic_result | |
from ..database.semantic_export import export_user_interactions | |
def display_semantic_interface(lang_code, nlp_models, semantic_t): | |
""" | |
Interfaz para el análisis semántico | |
Args: | |
lang_code: Código del idioma actual | |
nlp_models: Modelos de spaCy cargados | |
semantic_t: Diccionario de traducciones | |
""" | |
# Mantener la página actual | |
st.session_state.page = 'semantic' | |
# Estilos para los botones y controles | |
st.markdown(""" | |
<style> | |
.stButton button { | |
width: 100%; | |
padding: 0.5rem; | |
} | |
.upload-container { | |
display: flex; | |
align-items: center; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Contenedor principal para controles | |
with st.container(): | |
# Área de carga de archivo y botones | |
col_upload, col_analyze, col_export, col_new = st.columns([4,2,2,2]) | |
with col_upload: | |
uploaded_file = st.file_uploader( | |
semantic_t.get('file_uploader', 'Upload text file'), | |
type=['txt'] | |
) | |
with col_analyze: | |
analyze_button = st.button( | |
semantic_t.get('analyze_button', 'Analyze'), | |
disabled=(uploaded_file is None) | |
) | |
with col_export: | |
export_button = st.button( | |
semantic_t.get('export_button', 'Export'), | |
disabled=not ('semantic_result' in st.session_state) | |
) | |
with col_new: | |
new_button = st.button( | |
semantic_t.get('new_analysis', 'New'), | |
disabled=not ('semantic_result' in st.session_state) | |
) | |
# Línea separadora | |
st.markdown("---") | |
# Lógica de análisis | |
if uploaded_file is not None and analyze_button: | |
try: | |
# Procesar el archivo | |
text_content = uploaded_file.getvalue().decode('utf-8') | |
with st.spinner(semantic_t.get('processing', 'Processing...')): | |
# Realizar análisis | |
analysis_result = perform_semantic_analysis( | |
text_content, | |
nlp_models[lang_code], | |
lang_code | |
) | |
# Guardar resultado | |
st.session_state.semantic_result = analysis_result | |
# Guardar en base de datos | |
if store_student_semantic_result( | |
st.session_state.username, | |
text_content, | |
analysis_result | |
): | |
st.success(semantic_t.get('success_message', 'Analysis saved successfully')) | |
else: | |
st.error(semantic_t.get('error_message', 'Error saving analysis')) | |
# Mostrar resultados | |
display_semantic_results(analysis_result, lang_code, semantic_t) | |
except Exception as e: | |
st.error(f"Error: {str(e)}") | |
# Manejo de exportación | |
if export_button and 'semantic_result' in st.session_state: | |
try: | |
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic') | |
st.download_button( | |
label=semantic_t.get('download_pdf', 'Download PDF'), | |
data=pdf_buffer, | |
file_name="semantic_analysis.pdf", | |
mime="application/pdf" | |
) | |
except Exception as e: | |
st.error(f"Error exporting: {str(e)}") | |
# Nuevo análisis | |
if new_button: | |
if 'semantic_result' in st.session_state: | |
del st.session_state.semantic_result | |
st.rerun() | |
# Mostrar resultados previos o mensaje inicial | |
if 'semantic_result' in st.session_state: | |
display_semantic_results(st.session_state.semantic_result, lang_code, semantic_t) | |
elif uploaded_file is None: | |
st.info(semantic_t.get('initial_message', 'Upload a file to begin analysis')) | |
def display_semantic_results(result, lang_code, semantic_t): | |
""" | |
Muestra los resultados del análisis semántico | |
""" | |
if result is None or not result['success']: | |
st.warning(semantic_t.get('no_results', 'No results available')) | |
return | |
analysis = result['analysis'] | |
# Crear tabs para los resultados | |
tab1, tab2 = st.tabs([ | |
semantic_t.get('concepts_tab', 'Key Concepts Analysis'), | |
semantic_t.get('entities_tab', 'Entities Analysis') | |
]) | |
# Tab 1: Conceptos Clave | |
with tab1: | |
col1, col2 = st.columns(2) | |
# Columna 1: Lista de conceptos | |
with col1: | |
st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) | |
concept_text = "\n".join([ | |
f"• {concept} ({frequency:.2f})" | |
for concept, frequency in analysis['key_concepts'] | |
]) | |
st.markdown(concept_text) | |
# Columna 2: Gráfico de conceptos | |
with col2: | |
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph')) | |
st.image(analysis['concept_graph']) | |
# Tab 2: Entidades | |
with tab2: | |
col1, col2 = st.columns(2) | |
# Columna 1: Lista de entidades | |
with col1: | |
st.subheader(semantic_t.get('identified_entities', 'Identified Entities')) | |
if 'entities' in analysis: | |
for entity_type, entities in analysis['entities'].items(): | |
st.markdown(f"**{entity_type}**") | |
st.markdown("• " + "\n• ".join(entities)) | |
# Columna 2: Gráfico de entidades | |
with col2: | |
st.subheader(semantic_t.get('entity_graph', 'Entities Graph')) | |
st.image(analysis['entity_graph']) |