Spaces:
Running
Running
# modules/discourse/discourse/discourse_interface.py | |
import streamlit as st | |
import pandas as pd | |
import plotly.graph_objects as go | |
import logging | |
from ..utils.widget_utils import generate_unique_key | |
from .discourse_process import perform_discourse_analysis | |
from ..database.chat_mongo_db import store_chat_history | |
from ..database.discourse_mongo_db import store_student_discourse_result | |
logger = logging.getLogger(__name__) | |
############################################################################################# | |
def display_discourse_results(result, lang_code, discourse_t): | |
""" | |
Muestra los resultados del an谩lisis del discurso con conceptos en formato horizontal | |
""" | |
if not result.get('success'): | |
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles')) | |
return | |
# Estilo CSS para los conceptos horizontales | |
st.markdown(""" | |
<style> | |
.concepts-container { | |
display: flex; | |
flex-wrap: nowrap; | |
gap: 8px; | |
padding: 12px; | |
background-color: #f8f9fa; | |
border-radius: 8px; | |
overflow-x: auto; | |
margin-bottom: 15px; | |
} | |
.concept-item { | |
background-color: white; | |
border-radius: 4px; | |
padding: 6px 10px; | |
display: inline-flex; | |
align-items: center; | |
gap: 4px; | |
box-shadow: 0 1px 2px rgba(0,0,0,0.1); | |
flex-shrink: 0; | |
} | |
.concept-name { | |
font-weight: 500; | |
color: #1f2937; | |
font-size: 0.85em; | |
} | |
.concept-freq { | |
color: #6b7280; | |
font-size: 0.75em; | |
} | |
.graph-container { | |
background-color: white; | |
border-radius: 8px; | |
padding: 15px; | |
box-shadow: 0 1px 3px rgba(0,0,0,0.1); | |
margin-top: 10px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
col1, col2 = st.columns(2) | |
# Documento 1 | |
with col1: | |
with st.expander(discourse_t.get('doc1_title', 'Documento 1'), expanded=True): | |
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave')) | |
if 'key_concepts1' in result: | |
# Crear HTML para conceptos horizontales | |
concepts_html = '<div class="concepts-container">' | |
for concept, freq in result['key_concepts1']: | |
concepts_html += f""" | |
<div class="concept-item"> | |
<span class="concept-name">{concept}</span> | |
<span class="concept-freq">({freq:.2f})</span> | |
</div> | |
""" | |
concepts_html += '</div>' | |
st.markdown(concepts_html, unsafe_allow_html=True) | |
if 'graph1' in result: | |
with st.container(): | |
st.markdown('<div class="graph-container">', unsafe_allow_html=True) | |
st.pyplot(result['graph1']) | |
st.markdown('</div>', unsafe_allow_html=True) | |
else: | |
st.warning(discourse_t.get('graph_not_available', 'Gr谩fico no disponible')) | |
else: | |
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) | |
# Documento 2 | |
with col2: | |
with st.expander(discourse_t.get('doc2_title', 'Documento 2'), expanded=True): | |
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave')) | |
if 'key_concepts2' in result: | |
# Crear HTML para conceptos horizontales | |
concepts_html = '<div class="concepts-container">' | |
for concept, freq in result['key_concepts2']: | |
concepts_html += f""" | |
<div class="concept-item"> | |
<span class="concept-name">{concept}</span> | |
<span class="concept-freq">({freq:.2f})</span> | |
</div> | |
""" | |
concepts_html += '</div>' | |
st.markdown(concepts_html, unsafe_allow_html=True) | |
if 'graph2' in result: | |
with st.container(): | |
st.markdown('<div class="graph-container">', unsafe_allow_html=True) | |
st.pyplot(result['graph2']) | |
st.markdown('</div>', unsafe_allow_html=True) | |
else: | |
st.warning(discourse_t.get('graph_not_available', 'Gr谩fico no disponible')) | |
else: | |
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) | |
# Nota informativa sobre la comparaci贸n | |
st.info(discourse_t.get('comparison_note', | |
'La funcionalidad de comparaci贸n detallada estar谩 disponible en una pr贸xima actualizaci贸n.')) | |
########################################################################################## | |
def display_discourse_results(result, lang_code, discourse_t): | |
""" | |
Muestra los resultados del an谩lisis del discurso | |
""" | |
if not result.get('success'): | |
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles')) | |
return | |
col1, col2 = st.columns(2) | |
# Documento 1 | |
with col1: | |
with st.expander(discourse_t.get('doc1_title', 'Documento 1'), expanded=True): | |
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave')) | |
if 'key_concepts1' in result: | |
df1 = pd.DataFrame(result['key_concepts1'], columns=['Concepto', 'Frecuencia']) | |
df1['Frecuencia'] = df1['Frecuencia'].round(2) | |
st.table(df1) | |
if 'graph1' in result: | |
st.pyplot(result['graph1']) | |
else: | |
st.warning(discourse_t.get('graph_not_available', 'Gr谩fico no disponible')) | |
else: | |
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) | |
# Documento 2 | |
with col2: | |
with st.expander(discourse_t.get('doc2_title', 'Documento 2'), expanded=True): | |
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave')) | |
if 'key_concepts2' in result: | |
df2 = pd.DataFrame(result['key_concepts2'], columns=['Concepto', 'Frecuencia']) | |
df2['Frecuencia'] = df2['Frecuencia'].round(2) | |
st.table(df2) | |
if 'graph2' in result: | |
st.pyplot(result['graph2']) | |
else: | |
st.warning(discourse_t.get('graph_not_available', 'Gr谩fico no disponible')) | |
else: | |
st.warning(discourse_t.get('concepts_not_available', 'Conceptos no disponibles')) | |
# Nota informativa sobre la comparaci贸n | |
st.info(discourse_t.get('comparison_note', | |
'La funcionalidad de comparaci贸n detallada estar谩 disponible en una pr贸xima actualizaci贸n.')) |