Spaces:
Running
Running
#modules/morphosyntax/morphosyntax_interface.py | |
import streamlit as st | |
from streamlit_float import * | |
from streamlit_antd_components import * | |
from streamlit.components.v1 import html | |
import base64 | |
from .morphosyntax_process import process_morphosyntactic_input, format_analysis_results | |
from ..utils.widget_utils import generate_unique_key | |
from ..database.morphosintax_mongo_db import store_student_morphosyntax_result | |
from ..database.chat_db import store_chat_history | |
from ..database.morphosintaxis_export import export_user_interactions | |
import logging | |
logger = logging.getLogger(__name__) | |
def display_morphosyntax_interface(lang_code, nlp_models, t): | |
""" | |
Interfaz para el análisis morfosintáctico | |
""" | |
morpho_t = t.get('MORPHOSYNTACTIC', {}) | |
st.title(morpho_t.get('title', 'AIdeaText - Morphological Analysis')) | |
input_key = f"morphosyntax_input_{lang_code}" | |
if input_key not in st.session_state: | |
st.session_state[input_key] = "" | |
sentence_input = st.text_area( | |
morpho_t.get('morpho_input_label', 'Enter text to analyze:'), | |
height=150, | |
placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...'), | |
value=st.session_state[input_key], | |
key=f"text_area_{lang_code}" | |
) | |
if st.button(morpho_t.get('analyze_button', 'Analyze'), key=f"analyze_button_{lang_code}"): | |
if sentence_input: | |
# Usar el proceso morfosintáctico actualizado | |
result = process_morphosyntactic_input( | |
sentence_input, | |
lang_code, | |
nlp_models, | |
t | |
) | |
if result['success']: | |
# Formatear y mostrar resultados | |
formatted_results = format_analysis_results(result, t) | |
# Mostrar texto resaltado si está disponible | |
if formatted_results['highlighted_text']: | |
st.markdown(formatted_results['highlighted_text'], unsafe_allow_html=True) | |
# Mostrar el análisis formateado | |
st.markdown(formatted_results['formatted_text']) | |
# Mostrar visualizaciones | |
if formatted_results['visualizations']: | |
for i, viz in enumerate(formatted_results['visualizations']): | |
st.markdown(f"**{morpho_t.get('sentence', 'Sentence')} {i+1}**") | |
st.components.v1.html(viz, height=370, scrolling=True) | |
if i < len(formatted_results['visualizations']) - 1: | |
st.markdown("---") | |
else: | |
st.error(result['message']) | |
else: | |
st.warning(morpho_t.get('warning_message', 'Please enter a text to analyze.')) | |
# Botón de exportación | |
if st.button(morpho_t.get('export_button', 'Export Analysis')): | |
pdf_buffer = export_user_interactions(st.session_state.username, 'morphosyntax') | |
st.download_button( | |
label=morpho_t.get('download_pdf', 'Download PDF'), | |
data=pdf_buffer, | |
file_name="morphosyntax_analysis.pdf", | |
mime="application/pdf" | |
) | |
''' | |
if user_input: | |
# Añadir el mensaje del usuario al historial | |
st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) | |
# Procesar el input del usuario nuevo al 26-9-2024 | |
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) | |
# Mostrar indicador de carga | |
with st.spinner(t.get('processing', 'Processing...')): | |
try: | |
# Procesar el input del usuario | |
response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) | |
# Añadir la respuesta al historial | |
message = { | |
"role": "assistant", | |
"content": response | |
} | |
if visualizations: | |
message["visualizations"] = visualizations | |
st.session_state.morphosyntax_chat_history.append(message) | |
# Mostrar la respuesta más reciente | |
with st.chat_message("assistant"): | |
st.write(response) | |
if visualizations: | |
for i, viz in enumerate(visualizations): | |
st.markdown(f"**Oración {i+1} del párrafo analizado**") | |
st.components.v1.html( | |
f""" | |
<div style="width: 100%; overflow-x: auto; white-space: nowrap;"> | |
<div style="min-width: 1200px;"> | |
{viz} | |
</div> | |
</div> | |
""", | |
height=350, | |
scrolling=True | |
) | |
if i < len(visualizations) - 1: | |
st.markdown("---") # Separador entre diagramas | |
# Si es un análisis, guardarlo en la base de datos | |
if user_input.startswith('/analisis_morfosintactico') and result: | |
store_morphosyntax_result( | |
st.session_state.username, | |
user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado | |
result.get('repeated_words', {}), | |
visualizations, | |
result.get('pos_analysis', []), | |
result.get('morphological_analysis', []), | |
result.get('sentence_structure', []) | |
) | |
except Exception as e: | |
st.error(f"{t['error_processing']}: {str(e)}") | |
# Forzar la actualización de la interfaz | |
st.rerun() | |
# Botón para limpiar el historial del chat | |
if st.button(t['clear_chat'], key=generate_unique_key('morphosyntax', 'clear_chat')): | |
st.session_state.morphosyntax_chat_history = [] | |
st.rerun() | |
''' | |
''' | |
############ MODULO PARA DEPURACIÓN Y PRUEBAS ##################################################### | |
def display_morphosyntax_interface(lang_code, nlp_models, t): | |
st.subheader(t['morpho_title']) | |
text_input = st.text_area( | |
t['warning_message'], | |
height=150, | |
key=generate_unique_key("morphosyntax", "text_area") | |
) | |
if st.button( | |
t['results_title'], | |
key=generate_unique_key("morphosyntax", "analyze_button") | |
): | |
if text_input: | |
# Aquí iría tu lógica de análisis morfosintáctico | |
# Por ahora, solo mostraremos un mensaje de placeholder | |
st.info(t['analysis_placeholder']) | |
else: | |
st.warning(t['no_text_warning']) | |
### | |
################################################# | |
''' | |