Spaces:
Running
Running
# modules/studentact/current_situation_interface.py | |
import streamlit as st | |
import logging | |
from ..utils.widget_utils import generate_unique_key | |
from ..database.current_situation_mongo_db import store_current_situation_result | |
from .current_situation_analysis import ( | |
analyze_text_dimensions, | |
analyze_clarity, | |
analyze_reference_clarity, | |
analyze_vocabulary_diversity, | |
analyze_cohesion, | |
analyze_structure, | |
get_dependency_depths, | |
normalize_score, | |
generate_sentence_graphs, | |
generate_word_connections, | |
generate_connection_paths, | |
create_vocabulary_network, | |
create_syntax_complexity_graph, | |
create_cohesion_heatmap, | |
) | |
logger = logging.getLogger(__name__) | |
#################################### | |
def display_current_situation_interface(lang_code, nlp_models, t): | |
""" | |
Interfaz simplificada con gráfico de radar para visualizar métricas. | |
""" | |
try: | |
# Inicializar estados si no existen | |
if 'text_input' not in st.session_state: | |
st.session_state.text_input = "" | |
if 'show_results' not in st.session_state: | |
st.session_state.show_results = False | |
if 'current_doc' not in st.session_state: | |
st.session_state.current_doc = None | |
if 'current_metrics' not in st.session_state: | |
st.session_state.current_metrics = None | |
st.markdown("## Análisis Inicial de Escritura") | |
# Container principal con dos columnas | |
with st.container(): | |
input_col, results_col = st.columns([1,2]) | |
with input_col: | |
st.markdown("### Ingresa tu texto") | |
# Función para manejar cambios en el texto | |
def on_text_change(): | |
st.session_state.text_input = st.session_state.text_area | |
st.session_state.show_results = False | |
# Text area con manejo de estado | |
text_input = st.text_area( | |
t.get('input_prompt', "Escribe o pega tu texto aquí:"), | |
height=400, | |
key="text_area", | |
value=st.session_state.text_input, | |
on_change=on_text_change, | |
help="Este texto será analizado para darte recomendaciones personalizadas" | |
) | |
if st.button( | |
t.get('analyze_button', "Analizar mi escritura"), | |
type="primary", | |
disabled=not text_input.strip(), | |
use_container_width=True, | |
): | |
try: | |
with st.spinner(t.get('processing', "Analizando...")): | |
doc = nlp_models[lang_code](text_input) | |
metrics = analyze_text_dimensions(doc) | |
# Guardar en MongoDB | |
storage_success = store_current_situation_result( | |
username=st.session_state.username, | |
text=text_input, | |
metrics=metrics, | |
feedback=None | |
) | |
if not storage_success: | |
logger.warning("No se pudo guardar el análisis en la base de datos") | |
st.session_state.current_doc = doc | |
st.session_state.current_metrics = metrics | |
st.session_state.show_results = True | |
st.session_state.text_input = text_input | |
except Exception as e: | |
logger.error(f"Error en análisis: {str(e)}") | |
st.error(t.get('analysis_error', "Error al analizar el texto")) | |
# Mostrar resultados en la columna derecha | |
with results_col: | |
if st.session_state.show_results and st.session_state.current_metrics is not None: | |
display_radar_chart(st.session_state.current_metrics) | |
except Exception as e: | |
logger.error(f"Error en interfaz: {str(e)}") | |
st.error("Ocurrió un error. Por favor, intente de nuevo.") | |
def display_radar_chart(metrics): | |
""" | |
Muestra un gráfico de radar con las cuatro métricas. | |
""" | |
try: | |
# Preparar datos para el gráfico de radar | |
categories = ['Vocabulario', 'Estructura', 'Cohesión', 'Claridad'] | |
values = [ | |
metrics['vocabulary']['normalized_score'], | |
metrics['structure']['normalized_score'], | |
metrics['cohesion']['normalized_score'], | |
metrics['clarity']['normalized_score'] | |
] | |
# Crear figura | |
fig = plt.figure(figsize=(8, 8)) | |
ax = fig.add_subplot(111, projection='polar') | |
# Número de variables | |
num_vars = len(categories) | |
# Calcular ángulos para cada eje | |
angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)] | |
angles += angles[:1] # Completar el círculo | |
# Extender valores para cerrar el polígono | |
values += values[:1] | |
# Dibujar las líneas de la cuadrícula principal | |
ax.set_xticks(angles[:-1]) | |
ax.set_xticklabels(categories) | |
# Configurar círculos concéntricos y etiquetas | |
circle_ticks = np.arange(0, 1.1, 0.1) | |
ax.set_yticks(circle_ticks) | |
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks]) | |
ax.set_ylim(0, 1) | |
# Dibujar líneas de la cuadrícula | |
ax.grid(True) | |
# Dibujar el gráfico | |
ax.plot(angles, values, 'o-', linewidth=2, label='Métricas') | |
ax.fill(angles, values, alpha=0.25) | |
# Ajustar el layout y mostrar | |
plt.tight_layout() | |
st.pyplot(fig) | |
plt.close() | |
# Mostrar valores numéricos debajo del gráfico | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.metric("Vocabulario", f"{values[0]:.2f}") | |
with col2: | |
st.metric("Estructura", f"{values[1]:.2f}") | |
with col3: | |
st.metric("Cohesión", f"{values[2]:.2f}") | |
with col4: | |
st.metric("Claridad", f"{values[3]:.2f}") | |
except Exception as e: | |
logger.error(f"Error generando gráfico de radar: {str(e)}") | |
st.error("Error al generar la visualización") |