|
import logging |
|
logging.basicConfig(level=logging.INFO) |
|
import datetime |
|
import io |
|
import base64 |
|
import os |
|
import streamlit as st |
|
import spacy |
|
from spacy import displacy |
|
import re |
|
import numpy as np |
|
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration |
|
from azure.cosmos import CosmosClient |
|
from azure.cosmos.exceptions import CosmosHttpResponseError |
|
from pymongo import MongoClient |
|
|
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
from modules.auth import clean_and_validate_key, register_user, authenticate_user, get_user_role |
|
from modules.morpho_analysis import get_repeated_words_colors, highlight_repeated_words, POS_COLORS, POS_TRANSLATIONS |
|
from modules.syntax_analysis import visualize_syntax |
|
|
|
|
|
cosmos_endpoint = os.environ.get("COSMOS_ENDPOINT") |
|
cosmos_key = os.environ.get("COSMOS_KEY") |
|
|
|
if not cosmos_endpoint or not cosmos_key: |
|
raise ValueError("Las variables de entorno COSMOS_ENDPOINT y COSMOS_KEY deben estar configuradas") |
|
|
|
try: |
|
cosmos_key = clean_and_validate_key(cosmos_key) |
|
cosmos_client = CosmosClient(cosmos_endpoint, cosmos_key) |
|
|
|
|
|
user_database = cosmos_client.get_database_client("user_database") |
|
user_container = user_database.get_container_client("users") |
|
|
|
print("Conexi贸n a Cosmos DB SQL API exitosa") |
|
except Exception as e: |
|
print(f"Error al conectar con Cosmos DB SQL API: {str(e)}") |
|
raise |
|
|
|
|
|
|
|
cosmos_mongodb_connection_string = os.getenv("MONGODB_CONNECTION_STRING") |
|
|
|
if not cosmos_mongodb_connection_string: |
|
raise ValueError("La variable de entorno MONGODB_CONNECTION_STRING debe estar configurada") |
|
|
|
try: |
|
|
|
mongo_client = MongoClient(cosmos_mongodb_connection_string) |
|
|
|
|
|
mongo_db = mongo_client['aideatext_db'] |
|
|
|
|
|
analysis_collection = mongo_db['text_analysis'] |
|
|
|
|
|
mongo_client.server_info() |
|
print("Conexi贸n a MongoDB API exitosa") |
|
|
|
|
|
|
|
if 'text_analysis' in mongo_db.list_collection_names(): |
|
print("Colecci贸n 'text_analysis' encontrada") |
|
else: |
|
print("Advertencia: La colecci贸n 'text_analysis' no existe. Se crear谩 autom谩ticamente al insertar el primer documento.") |
|
|
|
except Exception as e: |
|
print(f"Error al conectar con MongoDB API: {str(e)}") |
|
raise |
|
|
|
|
|
st.set_page_config( |
|
page_title="AIdeaText", |
|
layout="wide", |
|
page_icon="random" |
|
) |
|
|
|
@st.cache_resource |
|
def load_chatbot_model(): |
|
tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill") |
|
model = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill") |
|
return tokenizer, model |
|
|
|
|
|
chatbot_tokenizer, chatbot_model = load_chatbot_model() |
|
|
|
def get_chatbot_response(input_text): |
|
inputs = chatbot_tokenizer(input_text, return_tensors="pt") |
|
reply_ids = chatbot_model.generate(**inputs) |
|
response = chatbot_tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0] |
|
return response |
|
|
|
def load_spacy_models(): |
|
return { |
|
'es': spacy.load("es_core_news_lg"), |
|
'en': spacy.load("en_core_web_lg"), |
|
'fr': spacy.load("fr_core_news_lg") |
|
} |
|
|
|
def store_analysis_result(username, text, repeated_words, arc_diagrams, network_diagram): |
|
try: |
|
|
|
buffer = io.BytesIO() |
|
network_diagram.savefig(buffer, format='png') |
|
buffer.seek(0) |
|
network_diagram_base64 = base64.b64encode(buffer.getvalue()).decode() |
|
|
|
|
|
word_count = {} |
|
for word, color in repeated_words.items(): |
|
category = POS_TRANSLATIONS.get(color, 'Otros') |
|
word_count[category] = word_count.get(category, 0) + 1 |
|
|
|
|
|
analysis_document = { |
|
'username': username, |
|
'timestamp': datetime.datetime.utcnow(), |
|
'text': text, |
|
'word_count': word_count, |
|
'arc_diagrams': arc_diagrams, |
|
'network_diagram': network_diagram_base64 |
|
} |
|
|
|
|
|
result = analysis_collection.insert_one(analysis_document) |
|
|
|
logging.info(f"An谩lisis guardado con ID: {result.inserted_id} para el usuario: {username}") |
|
return True |
|
except Exception as e: |
|
logging.error(f"Error al guardar el an谩lisis para el usuario {username}: {str(e)}") |
|
return False |
|
|
|
def login_page(): |
|
st.title("Iniciar Sesi贸n") |
|
username = st.text_input("Usuario") |
|
password = st.text_input("Contrase帽a", type='password') |
|
if st.button("Iniciar Sesi贸n"): |
|
if authenticate_user(username, password): |
|
st.success(f"Bienvenido, {username}!") |
|
st.session_state.logged_in = True |
|
st.session_state.username = username |
|
st.session_state.role = get_user_role(username) |
|
st.experimental_rerun() |
|
else: |
|
st.error("Usuario o contrase帽a incorrectos") |
|
|
|
def register_page(): |
|
st.title("Registrarse") |
|
new_username = st.text_input("Nuevo Usuario") |
|
new_password = st.text_input("Nueva Contrase帽a", type='password') |
|
role = st.selectbox("Rol", ["Estudiante", "Profesor"]) |
|
|
|
additional_info = {} |
|
if role == "Estudiante": |
|
additional_info['carrera'] = st.text_input("Carrera") |
|
elif role == "Profesor": |
|
additional_info['departamento'] = st.text_input("Departamento") |
|
|
|
if st.button("Registrarse"): |
|
if register_user(new_username, new_password, role, additional_info): |
|
st.success("Registro exitoso. Por favor, inicia sesi贸n.") |
|
else: |
|
st.error("El usuario ya existe o ocurri贸 un error durante el registro") |
|
|
|
def main_app(): |
|
|
|
nlp_models = load_spacy_models() |
|
|
|
|
|
languages = { |
|
'Espa帽ol': 'es', |
|
'English': 'en', |
|
'Fran莽ais': 'fr' |
|
} |
|
selected_lang = st.sidebar.selectbox("Select Language / Seleccione el idioma / Choisissez la langue", list(languages.keys())) |
|
lang_code = languages[selected_lang] |
|
|
|
|
|
translations = { |
|
'es': { |
|
'title': "AIdeaText - An谩lisis morfol贸gico y sint谩ctico", |
|
'input_label': "Ingrese un texto para analizar (m谩x. 5,000 palabras):", |
|
'input_placeholder': "El objetivo de esta aplicaci贸n es que mejore sus habilidades de redacci贸n. Para ello, despu茅s de ingresar su texto y presionar el bot贸n obtendr谩 tres vistas horizontales. La primera, le indicar谩 las palabras que se repiten por categor铆a gram谩tical; la segunda, un diagrama de arco le indicara las conexiones sint谩cticas en cada oraci贸n; y la tercera, es un grafo en el cual visualizara la configuraci贸n de su texto.", |
|
'analyze_button': "Analizar texto", |
|
'repeated_words': "Palabras repetidas", |
|
'legend': "Leyenda: Categor铆as gramaticales", |
|
'arc_diagram': "An谩lisis sint谩ctico: Diagrama de arco", |
|
'network_diagram': "An谩lisis sint谩ctico: Diagrama de red", |
|
'sentence': "Oraci贸n" |
|
}, |
|
'en': { |
|
'title': "AIdeaText - Morphological and Syntactic Analysis", |
|
'input_label': "Enter a text to analyze (max 5,000 words):", |
|
'input_placeholder': "The goal of this app is for you to improve your writing skills. To do this, after entering your text and pressing the button you will get three horizontal views. The first will indicate the words that are repeated by grammatical category; second, an arc diagram will indicate the syntactic connections in each sentence; and the third is a graph in which you will visualize the configuration of your text.", |
|
'analyze_button': "Analyze text", |
|
'repeated_words': "Repeated words", |
|
'legend': "Legend: Grammatical categories", |
|
'arc_diagram': "Syntactic analysis: Arc diagram", |
|
'network_diagram': "Syntactic analysis: Network diagram", |
|
'sentence': "Sentence" |
|
}, |
|
'fr': { |
|
'title': "AIdeaText - Analyse morphologique et syntaxique", |
|
'input_label': "Entrez un texte 脿 analyser (max 5 000 mots) :", |
|
'input_placeholder': "Le but de cette application est d'am茅liorer vos comp茅tences en r茅daction. Pour ce faire, apr猫s avoir saisi votre texte et appuy茅 sur le bouton vous obtiendrez trois vues horizontales. Le premier indiquera les mots r茅p茅t茅s par cat茅gorie grammaticale; deuxi猫mement, un diagramme en arcs indiquera les connexions syntaxiques dans chaque phrase; et le troisi猫me est un graphique dans lequel vous visualiserez la configuration de votre texte.", |
|
'analyze_button': "Analyser le texte", |
|
'repeated_words': "Mots r茅p茅t茅s", |
|
'legend': "L茅gende : Cat茅gories grammaticales", |
|
'arc_diagram': "Analyse syntaxique : Diagramme en arc", |
|
'network_diagram': "Analyse syntaxique : Diagramme de r茅seau", |
|
'sentence': "Phrase" |
|
} |
|
} |
|
|
|
|
|
t = translations[lang_code] |
|
|
|
|
|
col1, col2 = st.columns([1, 2]) |
|
|
|
with col1: |
|
st.markdown(f"### Chat con AIdeaText") |
|
|
|
|
|
if 'chat_history' not in st.session_state: |
|
st.session_state.chat_history = [] |
|
|
|
|
|
for i, (role, text) in enumerate(st.session_state.chat_history): |
|
if role == "user": |
|
st.text_area(f"T煤:", value=text, height=50, key=f"user_message_{i}", disabled=True) |
|
else: |
|
st.text_area(f"AIdeaText:", value=text, height=50, key=f"bot_message_{i}", disabled=True) |
|
|
|
|
|
user_input = st.text_input("Escribe tu mensaje aqu铆:") |
|
|
|
if st.button("Enviar"): |
|
if user_input: |
|
|
|
st.session_state.chat_history.append(("user", user_input)) |
|
|
|
|
|
response = get_chatbot_response(user_input) |
|
|
|
|
|
st.session_state.chat_history.append(("bot", response)) |
|
|
|
|
|
st.experimental_rerun() |
|
|
|
with col2: |
|
st.markdown(f"### {t['title']}") |
|
|
|
if st.session_state.role == "Estudiante": |
|
|
|
if 'input_text' not in st.session_state: |
|
st.session_state.input_text = "" |
|
|
|
sentence_input = st.text_area(t['input_label'], height=150, placeholder=t['input_placeholder'], value=st.session_state.input_text) |
|
st.session_state.input_text = sentence_input |
|
|
|
if st.button(t['analyze_button']): |
|
if sentence_input: |
|
doc = nlp_models[lang_code](sentence_input) |
|
|
|
|
|
with st.expander(t['repeated_words'], expanded=True): |
|
word_colors = get_repeated_words_colors(doc) |
|
highlighted_text = highlight_repeated_words(doc, word_colors) |
|
st.markdown(highlighted_text, unsafe_allow_html=True) |
|
|
|
|
|
st.markdown(f"##### {t['legend']}") |
|
legend_html = "<div style='display: flex; flex-wrap: wrap;'>" |
|
for pos, color in POS_COLORS.items(): |
|
if pos in POS_TRANSLATIONS: |
|
legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[pos]}</span></div>" |
|
legend_html += "</div>" |
|
st.markdown(legend_html, unsafe_allow_html=True) |
|
|
|
|
|
with st.expander(t['arc_diagram'], expanded=True): |
|
sentences = list(doc.sents) |
|
arc_diagrams = [] |
|
for i, sent in enumerate(sentences): |
|
st.subheader(f"{t['sentence']} {i+1}") |
|
html = displacy.render(sent, style="dep", options={"distance": 100}) |
|
html = html.replace('height="375"', 'height="200"') |
|
html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) |
|
html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', lambda m: f'<g transform="translate({m.group(1)},50)"', html) |
|
st.write(html, unsafe_allow_html=True) |
|
arc_diagrams.append(html) |
|
|
|
|
|
with st.expander(t['network_diagram'], expanded=True): |
|
fig = visualize_syntax(sentence_input, nlp_models[lang_code], lang_code) |
|
st.pyplot(fig) |
|
|
|
|
|
|
|
if store_analysis_result( |
|
st.session_state.username, |
|
sentence_input, |
|
word_colors, |
|
arc_diagrams, |
|
fig |
|
): |
|
st.success("An谩lisis guardado correctamente.") |
|
else: |
|
st.error("Hubo un problema al guardar el an谩lisis. Por favor, int茅ntelo de nuevo.") |
|
|
|
elif st.session_state.role == "Profesor": |
|
|
|
st.write("Bienvenido, profesor. Aqu铆 podr谩s ver el progreso de tus estudiantes.") |
|
|
|
|
|
def main(): |
|
if 'logged_in' not in st.session_state: |
|
st.session_state.logged_in = False |
|
|
|
if not st.session_state.logged_in: |
|
menu = ["Iniciar Sesi贸n", "Registrarse"] |
|
choice = st.sidebar.selectbox("Menu", menu) |
|
if choice == "Iniciar Sesi贸n": |
|
login_page() |
|
elif choice == "Registrarse": |
|
register_page() |
|
else: |
|
if st.sidebar.button("Cerrar Sesi贸n"): |
|
st.session_state.logged_in = False |
|
st.experimental_rerun() |
|
main_app() |
|
|
|
if __name__ == "__main__": |
|
main() |