Spaces:
Running
Running
translate
Browse files
app.py
CHANGED
@@ -1,9 +1,158 @@
|
|
1 |
-
from fastapi import FastAPI
|
|
|
2 |
from fastapi.staticfiles import StaticFiles
|
3 |
-
from fastapi.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
app = FastAPI()
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Servir les fichiers statiques (HTML, CSS, JS)
|
8 |
app.mount("/static", StaticFiles(directory="static", html=True), name="static")
|
9 |
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
2 |
+
from fastapi.responses import JSONResponse, RedirectResponse
|
3 |
from fastapi.staticfiles import StaticFiles
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
+
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer, MarianMTModel, MarianTokenizer
|
6 |
+
import shutil
|
7 |
+
#
|
8 |
+
import os
|
9 |
+
import logging
|
10 |
+
from PyPDF2 import PdfReader
|
11 |
+
import docx
|
12 |
+
from PIL import Image
|
13 |
+
import openpyxl # 📌 Pour lire les fichiers Excel (.xlsx)
|
14 |
+
from pptx import Presentation
|
15 |
+
import fitz # PyMuPDF
|
16 |
+
import io
|
17 |
+
from docx import Document
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
import seaborn as sns
|
20 |
+
import torch
|
21 |
+
import re
|
22 |
+
import pandas as pd
|
23 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
24 |
+
from fastapi.responses import FileResponse
|
25 |
+
import os
|
26 |
+
from fastapi.middleware.cors import CORSMiddleware
|
27 |
+
import matplotlib
|
28 |
+
matplotlib.use('Agg')
|
29 |
+
|
30 |
+
import re
|
31 |
+
import torch
|
32 |
+
import pandas as pd
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
import seaborn as sns
|
35 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
36 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
37 |
+
from fastapi.responses import FileResponse
|
38 |
+
import os
|
39 |
+
from fastapi.middleware.cors import CORSMiddleware
|
40 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
41 |
+
from fastapi.responses import JSONResponse, RedirectResponse
|
42 |
+
from fastapi.staticfiles import StaticFiles
|
43 |
+
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer
|
44 |
+
import shutil
|
45 |
+
import os
|
46 |
+
import logging
|
47 |
+
from fastapi.middleware.cors import CORSMiddleware
|
48 |
+
from PyPDF2 import PdfReader
|
49 |
+
import docx
|
50 |
+
from PIL import Image # Pour ouvrir les images avant analyse
|
51 |
+
from transformers import MarianMTModel, MarianTokenizer
|
52 |
+
import os
|
53 |
+
import fitz
|
54 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
55 |
+
|
56 |
+
import logging
|
57 |
+
import openpyxl
|
58 |
+
|
59 |
+
|
60 |
+
# Configuration du logging
|
61 |
+
logging.basicConfig(level=logging.INFO)
|
62 |
|
63 |
app = FastAPI()
|
64 |
|
65 |
+
# Configuration CORS
|
66 |
+
app.add_middleware(
|
67 |
+
CORSMiddleware,
|
68 |
+
allow_origins=["*"],
|
69 |
+
allow_credentials=True,
|
70 |
+
allow_methods=["*"],
|
71 |
+
allow_headers=["*"],
|
72 |
+
)
|
73 |
+
|
74 |
+
UPLOAD_DIR = "uploads"
|
75 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
76 |
+
|
77 |
+
#traduction-----------------------------------------------------------------------------------------------------------
|
78 |
+
|
79 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
80 |
+
model_name = "facebook/m2m100_418M"
|
81 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
82 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
83 |
+
|
84 |
+
|
85 |
+
# Fonction pour extraire le texte
|
86 |
+
def extract_text_from_pdf(file):
|
87 |
+
doc = fitz.open(stream=file.file.read(), filetype="pdf")
|
88 |
+
return "\n".join([page.get_text() for page in doc]).strip()
|
89 |
+
|
90 |
+
def extract_text_from_docx(file):
|
91 |
+
doc = Document(io.BytesIO(file.file.read()))
|
92 |
+
return "\n".join([para.text for para in doc.paragraphs]).strip()
|
93 |
+
|
94 |
+
def extract_text_from_pptx(file):
|
95 |
+
prs = Presentation(io.BytesIO(file.file.read()))
|
96 |
+
return "\n".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]).strip()
|
97 |
+
|
98 |
+
def extract_text_from_excel(file):
|
99 |
+
wb = openpyxl.load_workbook(io.BytesIO(file.file.read()), data_only=True)
|
100 |
+
text = [str(cell) for sheet in wb.worksheets for row in sheet.iter_rows(values_only=True) for cell in row if cell]
|
101 |
+
return "\n".join(text).strip()
|
102 |
+
|
103 |
+
@app.post("/translate/")
|
104 |
+
async def translate_document(file: UploadFile = File(...), target_lang: str = Form(...)):
|
105 |
+
"""API pour traduire un document."""
|
106 |
+
try:
|
107 |
+
logging.info(f"📥 Fichier reçu : {file.filename}")
|
108 |
+
logging.info(f"🌍 Langue cible reçue : {target_lang}")
|
109 |
+
|
110 |
+
if model is None or tokenizer is None:
|
111 |
+
return JSONResponse(status_code=500, content={"error": "Modèle de traduction non chargé"})
|
112 |
+
|
113 |
+
# Extraction du texte
|
114 |
+
if file.filename.endswith(".pdf"):
|
115 |
+
text = extract_text_from_pdf(file)
|
116 |
+
elif file.filename.endswith(".docx"):
|
117 |
+
text = extract_text_from_docx(file)
|
118 |
+
elif file.filename.endswith(".pptx"):
|
119 |
+
text = extract_text_from_pptx(file)
|
120 |
+
elif file.filename.endswith(".xlsx"):
|
121 |
+
text = extract_text_from_excel(file)
|
122 |
+
else:
|
123 |
+
return JSONResponse(status_code=400, content={"error": "Format non supporté"})
|
124 |
+
|
125 |
+
logging.info(f"📜 Texte extrait : {text[:50]}...")
|
126 |
+
|
127 |
+
if not text:
|
128 |
+
return JSONResponse(status_code=400, content={"error": "Aucun texte trouvé dans le document"})
|
129 |
+
|
130 |
+
# Vérifier si la langue cible est supportée
|
131 |
+
target_lang_id = tokenizer.get_lang_id(target_lang)
|
132 |
+
|
133 |
+
if target_lang_id is None:
|
134 |
+
return JSONResponse(
|
135 |
+
status_code=400,
|
136 |
+
content={"error": f"Langue cible '{target_lang}' non supportée. Langues disponibles : {list(tokenizer.lang_code_to_id.keys())}"}
|
137 |
+
)
|
138 |
+
|
139 |
+
# Traduction
|
140 |
+
tokenizer.src_lang = "fr"
|
141 |
+
encoded_text = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
142 |
+
|
143 |
+
logging.info(f"🔍 ID de la langue cible : {target_lang_id}")
|
144 |
+
|
145 |
+
generated_tokens = model.generate(**encoded_text, forced_bos_token_id=target_lang_id)
|
146 |
+
|
147 |
+
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
148 |
+
|
149 |
+
logging.info(f"✅ Traduction réussie : {translated_text[:50]}...")
|
150 |
+
return {"translated_text": translated_text}
|
151 |
+
|
152 |
+
except Exception as e:
|
153 |
+
logging.error(f"❌ Erreur lors de la traduction : {e}")
|
154 |
+
return JSONResponse(status_code=500, content={"error": "Échec de la traduction"})
|
155 |
+
|
156 |
# Servir les fichiers statiques (HTML, CSS, JS)
|
157 |
app.mount("/static", StaticFiles(directory="static", html=True), name="static")
|
158 |
|