File size: 16,080 Bytes
455f718
43d4d0a
 
 
efd633c
43d4d0a
efd633c
 
43d4d0a
 
 
 
 
efd633c
43d4d0a
 
 
efd633c
 
43d4d0a
 
 
 
 
 
 
 
 
 
 
efd633c
 
43d4d0a
 
 
 
efd633c
 
43d4d0a
 
 
efd633c
43d4d0a
 
 
 
 
efd633c
43d4d0a
efd633c
43d4d0a
 
 
 
 
 
 
 
 
 
 
 
455f718
43d4d0a
 
 
 
 
c4767a5
43d4d0a
 
 
 
 
 
df259fb
efd633c
 
 
 
 
 
845d6a6
 
efd633c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
766a3c6
 
 
 
efd633c
 
 
 
 
 
 
766a3c6
 
efd633c
 
766a3c6
efd633c
1c5cdc9
 
 
dfcb47b
efd633c
766a3c6
efd633c
 
 
766a3c6
 
efd633c
766a3c6
 
 
efd633c
766a3c6
efd633c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
766a3c6
1c5cdc9
 
 
 
 
efd633c
1c5cdc9
efd633c
766a3c6
efd633c
1c5cdc9
efd633c
 
 
 
766a3c6
efd633c
ad665e6
5d214a4
 
 
9b9ff7e
5d214a4
efd633c
 
 
766a3c6
efd633c
766a3c6
efd633c
766a3c6
 
 
efd633c
 
766a3c6
401cfef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efd633c
 
845d6a6
 
 
 
 
 
208af4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.staticfiles import StaticFiles
from fastapi.responses import RedirectResponse

from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer, MarianMTModel, MarianTokenizer
import shutil
#
import os
import logging
from PyPDF2 import PdfReader
import docx
from PIL import Image
import openpyxl  # 📌 Pour lire les fichiers Excel (.xlsx)
from pptx import Presentation
import fitz  # PyMuPDF
import io
from docx import Document
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import re
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM
from fastapi.responses import FileResponse
import os
from fastapi.middleware.cors import CORSMiddleware
import matplotlib
matplotlib.use('Agg')

import re
import torch
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForCausalLM
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import FileResponse
import os
from fastapi.middleware.cors import CORSMiddleware
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer
import shutil
import os
import logging
from fastapi.middleware.cors import CORSMiddleware
from PyPDF2 import PdfReader
import docx
from PIL import Image  # Pour ouvrir les images avant analyse
from transformers import MarianMTModel, MarianTokenizer
import os
import fitz 
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer

import logging
import openpyxl   


from fastapi.responses import FileResponse, RedirectResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from io import BytesIO
from pdfminer.high_level import extract_text
from docx import Document
import pandas as pd
from pptx import Presentation
import logging
from transformers import pipeline
from PIL import Image 
import io
import docx2txt
from fastapi.responses import StreamingResponse


# Configuration du logging
logging.basicConfig(level=logging.INFO)


app = FastAPI()

# Configuration CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

UPLOAD_DIR = "uploads"
os.makedirs(UPLOAD_DIR, exist_ok=True)




from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_name = "facebook/m2m100_418M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)


# Fonction pour extraire le texte
def extract_text_from_pdf(file):
    doc = fitz.open(stream=file.file.read(), filetype="pdf")
    return "\n".join([page.get_text() for page in doc]).strip()

def extract_text_from_docx(file):
    doc = Document(io.BytesIO(file.file.read()))
    return "\n".join([para.text for para in doc.paragraphs]).strip()

def extract_text_from_pptx(file):
    prs = Presentation(io.BytesIO(file.file.read()))
    return "\n".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]).strip()

def extract_text_from_excel(file):
    wb = openpyxl.load_workbook(io.BytesIO(file.file.read()), data_only=True)
    text = [str(cell) for sheet in wb.worksheets for row in sheet.iter_rows(values_only=True) for cell in row if cell]
    return "\n".join(text).strip()

@app.post("/translate/")
async def translate_document(file: UploadFile = File(...), target_lang: str = Form(...)):
    """API pour traduire un document."""
    try:
        logging.info(f"📥 Fichier reçu : {file.filename}")
        logging.info(f"🌍 Langue cible reçue : {target_lang}")

        if model is None or tokenizer is None:
            return JSONResponse(status_code=500, content={"error": "Modèle de traduction non chargé"})

        # Extraction du texte
        if file.filename.endswith(".pdf"):
            text = extract_text_from_pdf(file)
        elif file.filename.endswith(".docx"):
            text = extract_text_from_docx(file)
        elif file.filename.endswith(".pptx"):
            text = extract_text_from_pptx(file)
        elif file.filename.endswith(".xlsx"):
            text = extract_text_from_excel(file)
        else:
            return JSONResponse(status_code=400, content={"error": "Format non supporté"})

        logging.info(f"📜 Texte extrait : {text[:50]}...")

        if not text:
            return JSONResponse(status_code=400, content={"error": "Aucun texte trouvé dans le document"})

        # Vérifier si la langue cible est supportée
        target_lang_id = tokenizer.get_lang_id(target_lang)

        if target_lang_id is None:
            return JSONResponse(
                status_code=400,
                content={"error": f"Langue cible '{target_lang}' non supportée. Langues disponibles : {list(tokenizer.lang_code_to_id.keys())}"}
            )

        # Traduction
        tokenizer.src_lang = "fr"
        encoded_text = tokenizer(text, return_tensors="pt", padding=True, truncation=True)

        logging.info(f"🔍 ID de la langue cible : {target_lang_id}")

        generated_tokens = model.generate(**encoded_text, forced_bos_token_id=target_lang_id)

        translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

        logging.info(f"✅ Traduction réussie : {translated_text[:50]}...")
        return {"translated_text": translated_text}

    except Exception as e:
        logging.error(f"❌ Erreur lors de la traduction : {e}")
        return JSONResponse(status_code=500, content={"error": "Échec de la traduction"})




      

       
         # Charger le modèle pour la génération de code
codegen_model_name = "Salesforce/codegen-350M-mono"
device = "cuda" if torch.cuda.is_available() else "cpu"

codegen_tokenizer = AutoTokenizer.from_pretrained(codegen_model_name)
codegen_model = AutoModelForCausalLM.from_pretrained(codegen_model_name).to(device)


VALID_PLOTS = {"histplot", "scatterplot", "barplot", "lineplot", "boxplot"}
print("hello")
@app.post("/generate_viz/")
async def generate_viz(file: UploadFile = File(...), query: str = Form(...)):
    print("hello")
    try:
        contents = await file.read()
        excel_file = io.BytesIO(contents)
        df = pd.read_excel(excel_file)

        if query not in VALID_PLOTS:
            return JSONResponse(content={"error": f"Type de graphique invalide. Choisissez parmi : {', '.join(VALID_PLOTS)}"}, status_code=400)

        numeric_cols = df.select_dtypes(include=["number"]).columns

        if len(numeric_cols) < 1:
            return JSONResponse(content={"error": "Le fichier doit contenir au moins une colonne numérique."}, status_code=400)

        x_col = numeric_cols[0]
        y_col = numeric_cols[1] if query != "histplot" and len(numeric_cols) > 1 else None
        prompt_y = f', y="{y_col}"' if y_col else ""

        # Prompt d'entrée pour le modèle
        prompt = f"""
### Génère uniquement du code Python fonctionnel pour tracer un {query} avec Matplotlib et Seaborn ###
# Contraintes :
# - Utilise 'df' sans recréer de nouvelles données
# - Axe X : '{x_col}'
# - Enregistre le graphique sous 'plot.png'
# - Ne génère que du code Python valide, sans texte explicatif
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(8,6))
sns.{query}(data=df, x="{x_col}"{prompt_y})
plt.savefig("plot.png")
plt.close()
"""

        inputs = codegen_tokenizer(prompt, return_tensors="pt").to(device)
        outputs = codegen_model.generate(**inputs, max_new_tokens=120, pad_token_id=codegen_tokenizer.eos_token_id)
        generated_code = codegen_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()

        # 🔥 Nettoyage : couper si répétition du prompt
        if "### Génère uniquement du code Python fonctionnel" in generated_code[1:]:
            generated_code = generated_code.split("### Génère uniquement du code Python fonctionnel")[0]

        # 🔥 Nettoyage : éviter doublon imports
        generated_code = re.sub(r"(import matplotlib.pyplot as plt\nimport seaborn as sns\n)+", "import matplotlib.pyplot as plt\nimport seaborn as sns\n", generated_code)

        if generated_code.strip().endswith("sns."):
            generated_code = generated_code.rsplit("\n", 1)[0]

        print("🔹 Code généré propre :\n", generated_code)

        try:
            compile(generated_code, "<string>", "exec")
        except SyntaxError as e:
            return JSONResponse(content={"error": f"Erreur de syntaxe détectée : {e}\nCode généré :\n{generated_code}"}, status_code=422)

        exec_env = {
            "__builtins__": __builtins__,
            "df": df,
            }
        print("🔹🔹🔹 Code réellement exécuté :\n", generated_code)
        exec(generated_code, exec_env)

        img_path = "plot.png"
        if not os.path.exists(img_path):
            return JSONResponse(content={"error": "Le fichier plot.png n'a pas été généré."}, status_code=500)
        if os.path.getsize(img_path) == 0:
            return JSONResponse(content={"error": "Le fichier plot.png est vide."}, status_code=500)

        with open(img_path, "rb") as image_file:
            encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
            return JSONResponse(content={"image_base64": encoded_string})

    except Exception as e:
        return JSONResponse(content={"error": f"Erreur lors de la génération du graphique : {str(e)}"}, status_code=500)





# Charger le modèle de résumé
summarizer = None
try:
    summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
    logging.info("✅ Modèle de résumé chargé avec succès !")
except Exception as e:
    logging.error(f"❌ Erreur chargement modèle résumé : {e}")

try:
    image_captioning = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
    logging.info("✅ Modèle d'image chargé avec succès !")
except Exception as e:
    image_captioning = None
    logging.error(f"❌ Erreur chargement modèle image : {e}")

# Fonction pour extraire le texte d'un fichier Word
def extract_text_from_docx(docx_file):
    doc = Document(BytesIO(docx_file))
    text = "\n".join([para.text for para in doc.paragraphs])
    return text

# Fonction pour extraire le texte d'un fichier Excel
def extract_text_from_excel(xlsx_file):
    # Utiliser pandas pour lire le fichier Excel
    df = pd.read_excel(BytesIO(xlsx_file))
    text = df.to_string(index=False)
    return text

# Fonction pour extraire le texte d'un fichier PowerPoint
def extract_text_from_pptx(pptx_file):
    presentation = Presentation(BytesIO(pptx_file))
    text = ""
    for slide in presentation.slides:
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                text += shape.text + "\n"
    return text

# Endpoint pour la fonctionnalité de résumé
@app.post("/summarize/")
async def summarize(file: UploadFile = File(...)):
    # Si le modèle n'est pas encore chargé, retourner un message indiquant que le modèle est en train de se charger
    if summarizer is None:
        return {"message": "Le modèle est en cours de chargement, veuillez patienter..."}
    
    # Extraire le contenu du fichier téléchargé
    contents = await file.read()

    # Identifier le type de fichier et extraire le texte
    if file.filename.endswith(".pdf"):
        text = extract_text(BytesIO(contents))
    elif file.filename.endswith(".docx"):
        text = extract_text_from_docx(contents)
    elif file.filename.endswith(".xls") or file.filename.endswith(".xlsx"):
        text = extract_text_from_excel(contents)
    elif file.filename.endswith(".pptx") or file.filename.endswith(".ppt"):
        text = extract_text_from_pptx(contents)
    else:
        return {"summary": "Résumé non disponible pour ce format de fichier."}

    # Si un modèle de résumé est chargé, effectuer le résumé
    try:
        if summarizer:
            summary = summarizer(text[:1024])  # Limiter la taille d'entrée pour le modèle
            summary_text = summary[0]['summary_text']
        else:
            summary_text = "❌ Modèle de résumé non disponible."
    except Exception as e:
        summary_text = f"❌ Erreur lors de la génération du résumé : {e}"

    # Retourner le résumé généré
    return {"summary": summary_text}


@app.post("/image-caption/")
async def caption_image(file: UploadFile = File(...)):
    if image_captioning is None:
        return JSONResponse(content={"error": "Le modèle de captioning n'est pas disponible."}, status_code=500)
    
    try:
        contents = await file.read()
        image = Image.open(io.BytesIO(contents)).convert("RGB")
        result = image_captioning(image)
        caption = result[0]['generated_text']
        return {"caption": caption}
    except Exception as e:
        return JSONResponse(content={"error": str(e)}, status_code=500)

try:
    qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
    logging.info("✅ Modèle QA Texte chargé avec succès !")
except Exception as e:
    qa_pipeline = None
    logging.error(f"❌ Erreur chargement modèle QA Texte : {e}")
try:
    image_qa_pipeline = pipeline("visual-question-answering", model="Salesforce/blip-vqa-base")
    logging.info("✅ Modèle QA Image chargé avec succès !")
except Exception as e:
    image_qa_pipeline = None
    logging.error(f"❌ Erreur chargement modèle QA Image : {e}")

@app.post("/doc-qa/")
async def doc_question_answer(file: UploadFile = File(...), question: str = Form(...)):
    if qa_pipeline is None:
        return JSONResponse(content={"error": "Modèle indisponible."}, status_code=500)

    try:
        contents = await file.read()
        filename = file.filename.lower()

        if filename.endswith(".docx"):
            with open("temp.docx", "wb") as f:
                f.write(contents)
            context = docx2txt.process("temp.docx")

        elif filename.endswith((".xlsx", ".xls")):
            df = pd.read_excel(BytesIO(contents))
            context = df.to_string(index=False)

        elif filename.endswith(".pptx"):
            presentation = Presentation(BytesIO(contents))
            context = ""
            for slide in presentation.slides:
                for shape in slide.shapes:
                    if hasattr(shape, "text"):
                        context += shape.text + "\n"

        elif filename.endswith(".pdf"):
            context = extract_text(BytesIO(contents))

        else:
            return JSONResponse(content={"error": "Format non supporté."}, status_code=400)

        result = qa_pipeline(question=question, context=context)
        return {"answer": result["answer"]}

    except Exception as e:
        return JSONResponse(content={"error": str(e)}, status_code=500)


@app.post("/image-qa/")
async def image_qa(file: UploadFile = File(...), question: str = Form(...)):
    if image_qa_pipeline is None:
        return JSONResponse(content={"error": "Le modèle n'est pas disponible."}, status_code=500)
    
    try:
        contents = await file.read()
        image = Image.open(io.BytesIO(contents)).convert("RGB")
        result = image_qa_pipeline(image=image, question=question)
        answer = result[0]['answer']
        return {"answer": answer}
    except Exception as e:
        return JSONResponse(content={"error": str(e)}, status_code=500)

    

# Servir les fichiers statiques (HTML, CSS, JS)
app.mount("/static", StaticFiles(directory="static", html=True), name="static")


@app.get("/")
async def root():
    return RedirectResponse(url="/static/principal.html")