aalkaswan commited on
Commit
c838e94
·
verified ·
1 Parent(s): 6a0dc54

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -13
app.py CHANGED
@@ -108,35 +108,67 @@ def plot_scatter_tab4(cat, subcat, x, y, col):
108
  return fig
109
 
110
  # Tab 5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  def plot_scatter_tab5(cat, x, y, z, col):
 
112
  if cat != "All":
113
- data = raw_data[raw_data["Category"] == cat]
114
  else:
115
  data = raw_data
116
- # Group and normalize the data
 
 
117
  grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
118
  grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
119
 
 
120
  pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0).reset_index()
 
 
 
 
 
 
 
121
 
122
  if col == "Size":
123
  pivot_df[col] = pivot_df["model"].map(size_map)
124
  else:
125
  pivot_df[col] = pivot_df["model"].str.split("/").str[0]
126
 
127
- print("\nDEBUG: pivot_df.head():\n", pivot_df.head())
128
- print("\nDEBUG: pivot_df shape", pivot_df.shape)
129
- print("\nDEBUG: pivot_df columns", pivot_df.columns)
130
- print("\nDEBUG: Unique values x/y/z", pivot_df[x].unique(), pivot_df[y].unique(), pivot_df[z].unique())
131
-
132
- fig = px.scatter_3d(pivot_df, x=x, y=y, z=z,
133
- hover_name="model",
134
- title=f'{x} vs {y} vs {z}',
135
- color=col,
136
- color_continuous_scale="agsunset")
137
-
138
  return fig
139
 
 
140
  # Tab 6
141
  data_with_text = pd.read_csv("./tagged_data_with_text.csv")
142
  def random_sample(r: gr.Request):
 
108
  return fig
109
 
110
  # Tab 5
111
+ # def plot_scatter_tab5(cat, x, y, z, col):
112
+ # if cat != "All":
113
+ # data = raw_data[raw_data["Category"] == cat]
114
+ # else:
115
+ # data = raw_data
116
+ # # Group and normalize the data
117
+ # grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
118
+ # grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
119
+
120
+ # pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0).reset_index()
121
+
122
+ # if col == "Size":
123
+ # pivot_df[col] = pivot_df["model"].map(size_map)
124
+ # else:
125
+ # pivot_df[col] = pivot_df["model"].str.split("/").str[0]
126
+
127
+ # print("\nDEBUG: pivot_df.head():\n", pivot_df.head())
128
+ # print("\nDEBUG: pivot_df shape", pivot_df.shape)
129
+ # print("\nDEBUG: pivot_df columns", pivot_df.columns)
130
+ # print("\nDEBUG: Unique values x/y/z", pivot_df[x].unique(), pivot_df[y].unique(), pivot_df[z].unique())
131
+
132
+ # fig = px.scatter_3d(pivot_df, x=x, y=y, z=z,
133
+ # hover_name="model",
134
+ # title=f'{x} vs {y} vs {z}',
135
+ # color=col,
136
+ # color_continuous_scale="agsunset")
137
+
138
+ # return fig
139
+
140
  def plot_scatter_tab5(cat, x, y, z, col):
141
+ print("DEBUG:", cat, x, y, z, col)
142
  if cat != "All":
143
+ data = raw_data[raw_data["Category"].str.strip().str.lower() == cat.strip().lower()]
144
  else:
145
  data = raw_data
146
+ print("DEBUG: data rows after cat filter:", data.shape[0])
147
+ if data.empty:
148
+ return px.scatter_3d(title="No data left after category filtering!")
149
  grouped_cat = data.groupby(["model", "tag"]).size().reset_index(name="count").sort_values(by="count", ascending=False)
150
  grouped_cat["count"] = grouped_cat.groupby(["model"])["count"].transform(lambda x: x / x.sum())
151
 
152
+ print("DEBUG: grouped_cat head:", grouped_cat.head())
153
  pivot_df = grouped_cat.pivot(index='model', columns='tag', values='count').fillna(0).reset_index()
154
+ print("DEBUG: pivot_df head:", pivot_df.head())
155
+
156
+ # Ensure chosen columns exist
157
+ for k in [x, y, z]:
158
+ if k not in pivot_df.columns:
159
+ print(f"DEBUG: Axis {k} not found in data columns: {list(pivot_df.columns)}")
160
+ return px.scatter_3d(title=f"No {k} tag data for models!")
161
 
162
  if col == "Size":
163
  pivot_df[col] = pivot_df["model"].map(size_map)
164
  else:
165
  pivot_df[col] = pivot_df["model"].str.split("/").str[0]
166
 
167
+ print("DEBUG: unique color values:", pivot_df[col].unique())
168
+ fig = px.scatter_3d(pivot_df, x=x, y=y, z=z, hover_name="model", title=f'{x} vs {y} vs {z}', color=col)
 
 
 
 
 
 
 
 
 
169
  return fig
170
 
171
+
172
  # Tab 6
173
  data_with_text = pd.read_csv("./tagged_data_with_text.csv")
174
  def random_sample(r: gr.Request):