Sebastian Deatc commited on
Commit
8d4665d
·
verified ·
1 Parent(s): a112c7e
Files changed (1) hide show
  1. app.py +8 -13
app.py CHANGED
@@ -3,7 +3,6 @@ from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
  import pandas as pd
4
  from apscheduler.schedulers.background import BackgroundScheduler
5
  from huggingface_hub import snapshot_download
6
-
7
  from src.about import (
8
  CITATION_BUTTON_LABEL,
9
  CITATION_BUTTON_TEXT,
@@ -32,30 +31,25 @@ from src.submission.submit import add_new_eval
32
  def restart_space():
33
  API.restart_space(repo_id=REPO_ID)
34
 
35
- ### Space initialisation
36
  try:
37
- print(EVAL_REQUESTS_PATH)
38
  snapshot_download(
39
  repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
  )
41
  except Exception:
42
  restart_space()
43
  try:
44
- print(EVAL_RESULTS_PATH)
45
  snapshot_download(
46
  repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
  )
48
  except Exception:
49
  restart_space()
50
 
51
-
52
  LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
 
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
 
60
  def init_leaderboard(dataframe):
61
  if dataframe is None or dataframe.empty:
@@ -88,7 +82,7 @@ def init_leaderboard(dataframe):
88
  interactive=False,
89
  )
90
 
91
-
92
  demo = gr.Blocks(css=custom_css)
93
  with demo:
94
  gr.HTML(TITLE)
@@ -96,7 +90,8 @@ with demo:
96
 
97
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
  with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
 
100
 
101
  with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
@@ -201,4 +196,4 @@ with demo:
201
  scheduler = BackgroundScheduler()
202
  scheduler.add_job(restart_space, "interval", seconds=1800)
203
  scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
3
  import pandas as pd
4
  from apscheduler.schedulers.background import BackgroundScheduler
5
  from huggingface_hub import snapshot_download
 
6
  from src.about import (
7
  CITATION_BUTTON_LABEL,
8
  CITATION_BUTTON_TEXT,
 
31
  def restart_space():
32
  API.restart_space(repo_id=REPO_ID)
33
 
34
+ ### Space initialization
35
  try:
 
36
  snapshot_download(
37
  repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
38
  )
39
  except Exception:
40
  restart_space()
41
  try:
 
42
  snapshot_download(
43
  repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
44
  )
45
  except Exception:
46
  restart_space()
47
 
48
+ # Prepare your DataFrame
49
  LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
50
 
51
+ # Initialize DataFrames for evaluation queues
52
+ finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
 
 
 
53
 
54
  def init_leaderboard(dataframe):
55
  if dataframe is None or dataframe.empty:
 
82
  interactive=False,
83
  )
84
 
85
+ # Start Gradio interface
86
  demo = gr.Blocks(css=custom_css)
87
  with demo:
88
  gr.HTML(TITLE)
 
90
 
91
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
92
  with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
93
+ leaderboard = init_leaderboard(LEADERBOARD_DF) # Use the prepared DataFrame
94
+ gr.Row().update(leaderboard) # Ensure the leaderboard is included
95
 
96
  with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
97
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
 
196
  scheduler = BackgroundScheduler()
197
  scheduler.add_job(restart_space, "interval", seconds=1800)
198
  scheduler.start()
199
+ demo.queue(default_concurrency_limit=40).launch()