Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -151,7 +151,7 @@ with gr.Blocks() as demo:
|
|
151 |
)
|
152 |
with gr.TabItem("Helpfulness vs Harmfulness Plot"):
|
153 |
gr.Markdown("""
|
154 |
-
# Helpfulness vs Harmfulness
|
155 |
|
156 |
This scatterplot displays for each model the comparison between the rate of Helpful vs Harmful responses.
|
157 |
You can filter the categories and choose the color of the datapoints based on model or size.
|
@@ -166,6 +166,12 @@ with gr.Blocks() as demo:
|
|
166 |
gr.Plot(label="forecast", format="png"),
|
167 |
)
|
168 |
with gr.TabItem("Category Selection Plot"):
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
category = gr.Radio(choices=list(cats), label="Category Selection")
|
170 |
subcategory = gr.Dropdown(choices=[], label="Subcategory Selection")
|
171 |
category.change(fn=rs_change, inputs=category, outputs=subcategory)
|
|
|
151 |
)
|
152 |
with gr.TabItem("Helpfulness vs Harmfulness Plot"):
|
153 |
gr.Markdown("""
|
154 |
+
# Helpfulness vs Harmfulness Plot
|
155 |
|
156 |
This scatterplot displays for each model the comparison between the rate of Helpful vs Harmful responses.
|
157 |
You can filter the categories and choose the color of the datapoints based on model or size.
|
|
|
166 |
gr.Plot(label="forecast", format="png"),
|
167 |
)
|
168 |
with gr.TabItem("Category Selection Plot"):
|
169 |
+
gr.Markdown("""
|
170 |
+
# Category Selection Plot
|
171 |
+
|
172 |
+
Same as the Tag vs Tag Plot, but here it is possible to filter on specific subcategories.
|
173 |
+
|
174 |
+
""")
|
175 |
category = gr.Radio(choices=list(cats), label="Category Selection")
|
176 |
subcategory = gr.Dropdown(choices=[], label="Subcategory Selection")
|
177 |
category.change(fn=rs_change, inputs=category, outputs=subcategory)
|