Spaces:
Sleeping
Sleeping
File size: 9,216 Bytes
43cf100 102b503 b092502 43cf100 b092502 43cf100 b092502 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# import gradio as gr
# from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
# import pandas as pd
# from apscheduler.schedulers.background import BackgroundScheduler
# from huggingface_hub import snapshot_download
# from src.about import (
# CITATION_BUTTON_LABEL,
# CITATION_BUTTON_TEXT,
# EVALUATION_QUEUE_TEXT,
# INTRODUCTION_TEXT,
# LLM_BENCHMARKS_TEXT,
# TITLE,
# )
# from src.display.css_html_js import custom_css
# from src.display.utils import (
# BENCHMARK_COLS,
# COLS,
# EVAL_COLS,
# EVAL_TYPES,
# AutoEvalColumn,
# ModelType,
# fields,
# WeightType,
# Precision
# )
# from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
# from src.submission.submit import add_new_eval
# def restart_space():
# API.restart_space(repo_id=REPO_ID)
# ### Space initialization
# try:
# snapshot_download(
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
# except Exception:
# restart_space()
# try:
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
# except Exception:
# restart_space()
# # Prepare your DataFrame
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# # Initialize DataFrames for evaluation queues
# finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# def init_leaderboard(dataframe):
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn)],
# select_columns=SelectColumns(
# default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
# cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
# label="Select Columns to Display:",
# ),
# search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
# hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
# filter_columns=[
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
# ColumnFilter(
# AutoEvalColumn.params.name,
# type="slider",
# min=0.01,
# max=150,
# label="Select the number of parameters (B)",
# ),
# ColumnFilter(
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
# ),
# ],
# bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
# # Start Gradio interface
# demo = gr.Blocks(css=custom_css)
# with demo:
# gr.HTML(TITLE)
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# with gr.Tabs(elem_classes="tab-buttons") as tabs:
# with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
# leaderboard = init_leaderboard(LEADERBOARD_DF) # Use the prepared DataFrame
# gr.Row().update(leaderboard) # Ensure the leaderboard is included
# with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# with gr.Column():
# with gr.Accordion(
# f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# finished_eval_table = gr.components.Dataframe(
# value=finished_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# running_eval_table = gr.components.Dataframe(
# value=running_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# pending_eval_table = gr.components.Dataframe(
# value=pending_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Row():
# gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name_textbox = gr.Textbox(label="Model name")
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
# model_type = gr.Dropdown(
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
# label="Model type",
# multiselect=False,
# value=None,
# interactive=True,
# )
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# weight_type,
# model_type,
# ],
# submission_result,
# )
# with gr.Row():
# with gr.Accordion("π Citation", open=False):
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
# demo.queue(default_concurrency_limit=40).launch()
import gradio as gr
import pandas as pd
from tqdm import tqdm
# Parameters
models = ["modelA", "modelB", "modelC"] # Replace with your actual models
dataset = "my_dataset" # Replace with your actual dataset name
ROUNDS = 3 # Number of rounds
# Load and concatenate data
data = []
for model in tqdm(models):
model_name = model.replace("/", "_")
for i in range(ROUNDS):
try:
df = pd.read_pickle(f"./results/tagged/{dataset}_{model_name}_{i}.pkl")[["Category", "Sub-Category", "model", "round", "tag"]]
data.append(df)
except Exception as e:
print(f"skipping {dataset}_{model_name}_{i}")
raw_data = pd.concat(data)
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Aggregated Benchmark Results")
gr.DataFrame(value=raw_data, label="Benchmark Table", interactive=False) # Display the DataFrame
# Launch the Gradio app
demo.launch()
|