File size: 9,216 Bytes
43cf100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102b503
 
b092502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43cf100
 
 
b092502
 
43cf100
 
b092502
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# import gradio as gr
# from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
# import pandas as pd
# from apscheduler.schedulers.background import BackgroundScheduler
# from huggingface_hub import snapshot_download
# from src.about import (
#     CITATION_BUTTON_LABEL,
#     CITATION_BUTTON_TEXT,
#     EVALUATION_QUEUE_TEXT,
#     INTRODUCTION_TEXT,
#     LLM_BENCHMARKS_TEXT,
#     TITLE,
# )
# from src.display.css_html_js import custom_css
# from src.display.utils import (
#     BENCHMARK_COLS,
#     COLS,
#     EVAL_COLS,
#     EVAL_TYPES,
#     AutoEvalColumn,
#     ModelType,
#     fields,
#     WeightType,
#     Precision
# )
# from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
# from src.submission.submit import add_new_eval


# def restart_space():
#     API.restart_space(repo_id=REPO_ID)

# ### Space initialization
# try:
#     snapshot_download(
#         repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()
# try:
#     snapshot_download(
#         repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()

# # Prepare your DataFrame
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

# # Initialize DataFrames for evaluation queues
# finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

# def init_leaderboard(dataframe):
#     if dataframe is None or dataframe.empty:
#         raise ValueError("Leaderboard DataFrame is empty or None.")
#     return Leaderboard(
#         value=dataframe,
#         datatype=[c.type for c in fields(AutoEvalColumn)],
#         select_columns=SelectColumns(
#             default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
#             cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
#             label="Select Columns to Display:",
#         ),
#         search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
#         hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
#         filter_columns=[
#             ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
#             ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
#             ColumnFilter(
#                 AutoEvalColumn.params.name,
#                 type="slider",
#                 min=0.01,
#                 max=150,
#                 label="Select the number of parameters (B)",
#             ),
#             ColumnFilter(
#                 AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
#             ),
#         ],
#         bool_checkboxgroup_label="Hide models",
#         interactive=False,
#     )

# # Start Gradio interface
# demo = gr.Blocks(css=custom_css)
# with demo:
#     gr.HTML(TITLE)
#     gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

#     with gr.Tabs(elem_classes="tab-buttons") as tabs:
#         with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
#             leaderboard = init_leaderboard(LEADERBOARD_DF)  # Use the prepared DataFrame
#             gr.Row().update(leaderboard)  # Ensure the leaderboard is included

#         with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
#             gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

#         with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
#             with gr.Column():
#                 with gr.Row():
#                     gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

#                 with gr.Column():
#                     with gr.Accordion(
#                         f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
#                         open=False,
#                     ):
#                         with gr.Row():
#                             finished_eval_table = gr.components.Dataframe(
#                                 value=finished_eval_queue_df,
#                                 headers=EVAL_COLS,
#                                 datatype=EVAL_TYPES,
#                                 row_count=5,
#                             )
#                     with gr.Accordion(
#                         f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
#                         open=False,
#                     ):
#                         with gr.Row():
#                             running_eval_table = gr.components.Dataframe(
#                                 value=running_eval_queue_df,
#                                 headers=EVAL_COLS,
#                                 datatype=EVAL_TYPES,
#                                 row_count=5,
#                             )

#                     with gr.Accordion(
#                         f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
#                         open=False,
#                     ):
#                         with gr.Row():
#                             pending_eval_table = gr.components.Dataframe(
#                                 value=pending_eval_queue_df,
#                                 headers=EVAL_COLS,
#                                 datatype=EVAL_TYPES,
#                                 row_count=5,
#                             )
#             with gr.Row():
#                 gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

#             with gr.Row():
#                 with gr.Column():
#                     model_name_textbox = gr.Textbox(label="Model name")
#                     revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
#                     model_type = gr.Dropdown(
#                         choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
#                         label="Model type",
#                         multiselect=False,
#                         value=None,
#                         interactive=True,
#                     )

#                 with gr.Column():
#                     precision = gr.Dropdown(
#                         choices=[i.value.name for i in Precision if i != Precision.Unknown],
#                         label="Precision",
#                         multiselect=False,
#                         value="float16",
#                         interactive=True,
#                     )
#                     weight_type = gr.Dropdown(
#                         choices=[i.value.name for i in WeightType],
#                         label="Weights type",
#                         multiselect=False,
#                         value="Original",
#                         interactive=True,
#                     )
#                     base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

#             submit_button = gr.Button("Submit Eval")
#             submission_result = gr.Markdown()
#             submit_button.click(
#                 add_new_eval,
#                 [
#                     model_name_textbox,
#                     base_model_name_textbox,
#                     revision_name_textbox,
#                     precision,
#                     weight_type,
#                     model_type,
#                 ],
#                 submission_result,
#             )

#     with gr.Row():
#         with gr.Accordion("πŸ“™ Citation", open=False):
#             citation_button = gr.Textbox(
#                 value=CITATION_BUTTON_TEXT,
#                 label=CITATION_BUTTON_LABEL,
#                 lines=20,
#                 elem_id="citation-button",
#                 show_copy_button=True,
#             )

# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
# demo.queue(default_concurrency_limit=40).launch()


import gradio as gr
import pandas as pd
from tqdm import tqdm

# Parameters
models = ["modelA", "modelB", "modelC"]  # Replace with your actual models
dataset = "my_dataset"  # Replace with your actual dataset name
ROUNDS = 3  # Number of rounds

# Load and concatenate data
data = []
for model in tqdm(models):
    model_name = model.replace("/", "_")
    for i in range(ROUNDS):
        try:
            df = pd.read_pickle(f"./results/tagged/{dataset}_{model_name}_{i}.pkl")[["Category", "Sub-Category", "model", "round", "tag"]]
            data.append(df)
        except Exception as e:
            print(f"skipping {dataset}_{model_name}_{i}")

raw_data = pd.concat(data)

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Aggregated Benchmark Results")
    gr.DataFrame(value=raw_data, label="Benchmark Table", interactive=False)  # Display the DataFrame

# Launch the Gradio app
demo.launch()