Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,542 Bytes
f766ce9 729aa2a f766ce9 8b7a945 f766ce9 8b7a945 df659d0 9134169 1f17567 8b7a945 ec8e2d4 1f17567 ec8e2d4 df659d0 ec8e2d4 1f17567 ec8e2d4 9134169 1a2dba5 1f17567 1a2dba5 1f17567 1a2dba5 1f17567 9134169 ec8e2d4 729aa2a 1f17567 ec8e2d4 df659d0 ec8e2d4 729aa2a 1f17567 ec8e2d4 2edd122 9400714 1f17567 9400714 df659d0 9400714 32ee53f df659d0 649e0fb 7845083 9134169 f766ce9 9134169 7845083 729aa2a 7845083 98e75e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
from dataclasses import dataclass, make_dataclass
def _fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modification is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
def get_default_auto_eval_column_dict():
auto_eval_column_dict = []
auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent(COL_NAME_RANK, "number", True)])
auto_eval_column_dict.append(
[
"retrieval_model",
ColumnContent,
ColumnContent(COL_NAME_RETRIEVAL_MODEL, "markdown", True, never_hidden=True),
]
)
auto_eval_column_dict.append(
[
"reranking_model",
ColumnContent,
ColumnContent(COL_NAME_RERANKING_MODEL, "markdown", True, never_hidden=True),
]
)
auto_eval_column_dict.append(
["revision", ColumnContent, ColumnContent(COL_NAME_REVISION, "markdown", True, never_hidden=True)]
)
auto_eval_column_dict.append(
["timestamp", ColumnContent, ColumnContent(COL_NAME_TIMESTAMP, "date", True, never_hidden=True)]
)
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent(COL_NAME_AVG, "number", True)])
auto_eval_column_dict.append(
[
"retrieval_model_link",
ColumnContent,
ColumnContent(
COL_NAME_RETRIEVAL_MODEL_LINK,
"markdown",
False,
hidden=True,
),
]
)
auto_eval_column_dict.append(
[
"reranking_model_link",
ColumnContent,
ColumnContent(
COL_NAME_RERANKING_MODEL_LINK,
"markdown",
False,
hidden=True,
),
]
)
auto_eval_column_dict.append(
["is_anonymous", ColumnContent, ColumnContent(COL_NAME_IS_ANONYMOUS, "bool", False, hidden=True)]
)
return auto_eval_column_dict
def make_autoevalcolumn(cls_name, benchmarks):
auto_eval_column_dict = get_default_auto_eval_column_dict()
# Leaderboard columns
for benchmark in list(benchmarks.value):
auto_eval_column_dict.append(
[benchmark.name, ColumnContent, ColumnContent(benchmark.value.col_name, "number", True)]
)
# We use make dataclass to dynamically fill the scores from Tasks
return make_dataclass(cls_name, auto_eval_column_dict, frozen=True)
def get_default_col_names_and_types(benchmarks):
AutoEvalColumn = make_autoevalcolumn("AutoEvalColumn", benchmarks)
col_names = [c.name for c in _fields(AutoEvalColumn) if not c.hidden]
col_types = [c.type for c in _fields(AutoEvalColumn) if not c.hidden]
return col_names, col_types
def get_fixed_col_names_and_types():
fixed_cols = get_default_auto_eval_column_dict()[:-3]
return [c.name for _, _, c in fixed_cols], [c.type for _, _, c in fixed_cols]
COL_NAME_AVG = "Average ⬆️"
COL_NAME_RETRIEVAL_MODEL = "Retrieval Method"
COL_NAME_RERANKING_MODEL = "Reranking Model"
COL_NAME_RETRIEVAL_MODEL_LINK = "Retrieval Model LINK"
COL_NAME_RERANKING_MODEL_LINK = "Reranking Model LINK"
COL_NAME_RANK = "Rank 🏆"
COL_NAME_REVISION = "Revision"
COL_NAME_TIMESTAMP = "Submission Date"
COL_NAME_IS_ANONYMOUS = "Anonymous Submission"
|