Spaces:
Running
Running
File size: 6,196 Bytes
0eb933f 4e4fe07 76edd3a 0eb933f 5396a98 76edd3a 5396a98 76edd3a 5396a98 76edd3a f0ab7ff 76edd3a 5396a98 0eb933f 5396a98 0eb933f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
from huggingface_hub import HfApi
from huggingface_hub.hf_api import ModelInfo
import os
import datetime
OWNER = "EnergyStarAI"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
REQUESTS_DATASET_PATH = f"{OWNER}/requests_debug"
TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)
def update(name):
API.restart_space(COMPUTE_SPACE)
return f"Okay! {COMPUTE_SPACE} should be running now!"
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def add_new_eval(
repo_id: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
):
model_owner = repo_id.split("/")[0]
model_name = repo_id.split("/")[1]
precision = precision.split(" ")[0]
out_dir = f"{EVAL_REQUESTS_PATH}/{model_owner}"
print("Making Dataset directory to output results at %s" % out_dir)
os.makedirs(out_dir, exist_ok=True)
out_path = f"{EVAL_REQUESTS_PATH}/{model_owner}/{model_name}_eval_request_{precision}_{weight_type}.json"
current_time = datetime.now(datetime.timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
#if model_type is None or model_type == "":
# return styled_error("Please select a model type.")
# Does the model actually exist?
#if revision == "":
revision = "main"
# Is the model on the hub?
#if weight_type in ["Delta", "Adapter"]:
# base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not base_model_on_hub:
# return styled_error(f'Base model "{base_model}" {error}')
#if not weight_type == "Adapter":
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not model_on_hub:
# return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=repo_id, revision=revision)
except Exception:
print("Could not find information for model %s at revision %s" % (model, revision))
return
# return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
#try:
# license = model_info.cardData["license"]
#except Exception:
# return styled_error("Please select a license for your model")
#modelcard_OK, error_msg = check_model_card(model)
#if not modelcard_OK:
# return styled_error(error_msg)
# Seems good, creating the eval
print("Adding request")
request_entry = {
"model": repo_id,
"base_model": base_model,
"revision": revision,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size}
#"license": license,
#"private": False,
#}
# Check for duplicate submission
#if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
# return styled_warning("This model has been already submitted.")
print("Writing out request file to %s" % out_path)
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
with gr.Blocks() as demo:
gr.Markdown("This is a super basic example 'frontend'. Start typing below and then click **Run** to launch the job.")
gr.Markdown("The job will be launched at [EnergyStarAI/launch-computation-example](https://huggingface.co/spaces/EnergyStarAI/launch-computation-example)")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Run Analysis")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
outputs=submission_result,
)
demo.launch() |