File size: 21,503 Bytes
e7cbd6a
2cd90e2
 
 
 
e7cbd6a
2cd90e2
 
 
 
 
 
 
 
e7cbd6a
2cd90e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6df42e
b454a71
2cd90e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3ee32e
c6df42e
 
295d728
c6df42e
 
d3ee32e
2cd90e2
 
 
 
 
 
 
 
 
 
 
295d728
2cd90e2
c6df42e
2cd90e2
 
 
 
 
 
 
 
 
 
295d728
2cd90e2
 
 
 
 
 
 
c564ff8
2cd90e2
c6df42e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
e7cbd6a
5dc7166
2cd90e2
 
 
 
 
 
 
c564ff8
2cd90e2
fe6b2ac
2cd90e2
5dc7166
2cd90e2
 
 
 
 
 
 
c6df42e
295d728
2cd90e2
 
c6df42e
2cd90e2
 
f7b4006
2cd90e2
 
 
 
 
 
 
 
295d728
2cd90e2
 
 
 
c6df42e
2cd90e2
 
 
 
 
 
 
 
 
 
 
295d728
2cd90e2
 
c6df42e
2cd90e2
 
 
 
 
 
 
 
 
 
 
c6df42e
 
 
 
2cd90e2
 
c6df42e
 
 
2cd90e2
 
c6df42e
 
 
2cd90e2
 
c6df42e
 
 
2cd90e2
 
c6df42e
 
 
2cd90e2
 
c6df42e
 
 
2cd90e2
 
c6df42e
 
 
2cd90e2
 
c6df42e
 
 
2cd90e2
 
c6df42e
 
 
2cd90e2
 
c6df42e
 
 
2cd90e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c564ff8
295d728
c564ff8
 
 
2cd90e2
 
 
c6df42e
c564ff8
 
 
 
 
 
 
 
c6df42e
c564ff8
 
c6df42e
f66e432
c6df42e
f66e432
 
c6df42e
 
f66e432
c6df42e
2cd90e2
c6df42e
 
 
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6df42e
2cd90e2
c6df42e
 
 
 
 
 
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
c6df42e
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
c6df42e
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
c6df42e
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
c6df42e
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
c6df42e
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
c6df42e
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
c6df42e
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
c6df42e
 
 
 
 
2cd90e2
 
 
 
 
 
 
 
 
c6df42e
 
 
 
 
2cd90e2
c6df42e
2cd90e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c564ff8
e7cbd6a
295d728
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import gradio as gr
import pandas as pd
import os
import zipfile
import base64

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
    author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
    title = {AI Energy Score Leaderboard - February 2025},
    year = {2025},
    publisher = {Hugging Face},
    howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""

# List of tasks (CSV filenames)
tasks = [
    'asr.csv',
    'object_detection.csv',
    'text_classification.csv',
    'image_captioning.csv',
    'question_answering.csv',
    'text_generation.csv',
    'image_classification.csv',
    'sentence_similarity.csv',
    'image_generation.csv',
    'summarization.csv'
]

def format_stars(score):
    try:
        score_int = int(score)
    except Exception:
        score_int = 0
    # Render stars in green with a slightly larger font.
    return f'<span style="color: #3fa45bff; font-size:1.5em;">{"β˜…" * score_int}</span>'

def make_link(mname):
    parts = str(mname).split('/')
    display_name = parts[1] if len(parts) > 1 else mname
    return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'

def extract_link_text(html_link):
    """Extracts the inner text from an HTML link."""
    start = html_link.find('>') + 1
    end = html_link.rfind('</a>')
    if start > 0 and end > start:
        return html_link[start:end]
    else:
        return html_link

def generate_html_table_from_df(df):
    """
    Generates an HTML table with four columns:
      - Model (with link)
      - Provider (extracted from the model field)
      - GPU Energy (Wh) plus a horizontal bar
      - Score (as stars)
    """
    if not df.empty:
        max_length = max(len(extract_link_text(link)) for link in df['Model'])
    else:
        max_length = 10
    static_width = max_length * 10 + 16

    max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
    color_map = {"1": "black", "2": "black", "3": "black", "4": "black", "5": "black"}
    html = '<table style="width:100%; border-collapse: collapse; font-family: Inter, sans-serif;">'
    html += '<thead><tr style="background-color: #f2f2f2;">'
    html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
    html += '<th style="text-align: left; padding: 8px;" title="AI Provider extracted from the model name">Provider</th>'
    html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
    html += '<th style="text-align: left; padding: 8px;" title="Energy efficiency score">Score</th>'
    html += '</tr></thead>'
    html += '<tbody>'
    for _, row in df.iterrows():
        energy_numeric = row['gpu_energy_numeric']
        energy_str = f"{energy_numeric:.2f}"
        bar_width = (energy_numeric / max_energy) * 100
        score_val = row['energy_score']
        bar_color = color_map.get(str(score_val), "gray")
        html += '<tr>'
        html += f'<td style="padding: 8px; width: {static_width}px;">{row["Model"]}</td>'
        html += f'<td style="padding: 8px;">{row["Provider"]}</td>'
        html += (
            f'<td style="padding: 8px;">{energy_str}<br>'
            f'<div style="background-color: {bar_color}; width: {bar_width:.1f}%; height: 10px;"></div></td>'
        )
        html += f'<td style="padding: 8px;">{row["Score"]}</td>'
        html += '</tr>'
    html += '</tbody></table>'
    return f'<div class="table-container">{html}</div>'

# --- Functions for creating the efficiency difference callout cards ---
def get_efficiency_diff_for_all():
    """Calculates the efficiency difference across all models."""
    all_df = pd.DataFrame()
    for task in tasks:
        df = pd.read_csv('data/energy/' + task)
        if df.columns[0].startswith("Unnamed:"):
            df = df.iloc[:, 1:]
        df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
        all_df = pd.concat([all_df, df], ignore_index=True)
    if all_df.empty:
        return "<div>No data available</div>"
    min_val = all_df['gpu_energy_numeric'].min()
    max_val = all_df['gpu_energy_numeric'].max()
    diff = max_val - min_val
    # A colorful gradient card for global stats.
    return (
        f"<div style='background: linear-gradient(135deg, #f6d365, #fda085); padding: 15px; "
        f"border-radius: 8px; margin: 10px; color: #333;'>"
        f"<strong>All Models:</strong> Efficiency difference is <strong>{diff:.2f} Wh</strong> "
        f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)"
        f"</div>"
    )

def get_efficiency_diff_for_task(task_filename):
    """Calculates the efficiency difference for models in a given task."""
    df = pd.read_csv('data/energy/' + task_filename)
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
    if df.empty:
        return "<div>No data available</div>"
    min_val = df['gpu_energy_numeric'].min()
    max_val = df['gpu_energy_numeric'].max()
    diff = max_val - min_val
    # A different gradient for the selected task
    return (
        f"<div style='background: linear-gradient(135deg, #a8e063, #56ab2f); padding: 15px; "
        f"border-radius: 8px; margin: 10px; color: #333;'>"
        f"<strong>Selected Task:</strong> Efficiency difference is <strong>{diff:.2f} Wh</strong> "
        f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)"
        f"</div>"
    )

# --- Function to zip all CSV files (unchanged) ---
def zip_csv_files():
    data_dir = "data/energy"
    zip_filename = "data.zip"
    with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_DEFLATED) as zipf:
        for filename in os.listdir(data_dir):
            if filename.endswith(".csv"):
                filepath = os.path.join(data_dir, filename)
                zipf.write(filepath, arcname=filename)
    return zip_filename

def get_zip_data_link():
    zip_filename = zip_csv_files()
    with open(zip_filename, "rb") as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = (
        f'<a href="data:application/zip;base64,{b64}" '
        'download="data.zip" '
        'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
        'color: black; font-family: \'Inter\', sans-serif;">Download Data</a>'
    )
    return href

# --- Modified functions to include a sort_order parameter ---
def get_model_names_html(task, sort_order="Low to High"):
    df = pd.read_csv('data/energy/' + task)
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    df['energy_score'] = df['energy_score'].astype(int)
    df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
    # Add Provider column (text before the slash in the model field)
    df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    ascending = (sort_order == "Low to High")
    df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
    return generate_html_table_from_df(df)

def get_all_model_names_html(sort_order="Low to High"):
    all_df = pd.DataFrame()
    for task in tasks:
        df = pd.read_csv('data/energy/' + task)
        if df.columns[0].startswith("Unnamed:"):
            df = df.iloc[:, 1:]
        df['energy_score'] = df['energy_score'].astype(int)
        df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
        df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
        df['Model'] = df['model'].apply(make_link)
        df['Score'] = df['energy_score'].apply(format_stars)
        all_df = pd.concat([all_df, df], ignore_index=True)
    all_df = all_df.drop_duplicates(subset=['model'])
    ascending = (sort_order == "Low to High")
    all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
    return generate_html_table_from_df(all_df)

def get_text_generation_model_names_html(model_class, sort_order="Low to High"):
    df = pd.read_csv('data/energy/text_generation.csv')
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    if 'class' in df.columns:
        df = df[df['class'] == model_class]
    df['energy_score'] = df['energy_score'].astype(int)
    df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
    df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    ascending = (sort_order == "Low to High")
    df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
    return generate_html_table_from_df(df)

# --- Update functions for dropdown changes ---
def update_text_generation(selected_display, sort_order):
    mapping = {
        "A (Single Consumer GPU) <20B parameters": "A",
        "B (Single Cloud GPU) 20-66B parameters": "B",
        "C (Multiple Cloud GPUs) >66B parameters": "C"
    }
    model_class = mapping.get(selected_display, "A")
    table_html = get_text_generation_model_names_html(model_class, sort_order)
    # Update the task-specific callout for text generation
    task_diff_html = get_efficiency_diff_for_task('text_generation.csv')
    return table_html, task_diff_html

def update_image_generation(sort_order):
    table_html = get_model_names_html('image_generation.csv', sort_order)
    task_diff_html = get_efficiency_diff_for_task('image_generation.csv')
    return table_html, task_diff_html

def update_text_classification(sort_order):
    table_html = get_model_names_html('text_classification.csv', sort_order)
    task_diff_html = get_efficiency_diff_for_task('text_classification.csv')
    return table_html, task_diff_html

def update_image_classification(sort_order):
    table_html = get_model_names_html('image_classification.csv', sort_order)
    task_diff_html = get_efficiency_diff_for_task('image_classification.csv')
    return table_html, task_diff_html

def update_image_captioning(sort_order):
    table_html = get_model_names_html('image_captioning.csv', sort_order)
    task_diff_html = get_efficiency_diff_for_task('image_captioning.csv')
    return table_html, task_diff_html

def update_summarization(sort_order):
    table_html = get_model_names_html('summarization.csv', sort_order)
    task_diff_html = get_efficiency_diff_for_task('summarization.csv')
    return table_html, task_diff_html

def update_asr(sort_order):
    table_html = get_model_names_html('asr.csv', sort_order)
    task_diff_html = get_efficiency_diff_for_task('asr.csv')
    return table_html, task_diff_html

def update_object_detection(sort_order):
    table_html = get_model_names_html('object_detection.csv', sort_order)
    task_diff_html = get_efficiency_diff_for_task('object_detection.csv')
    return table_html, task_diff_html

def update_sentence_similarity(sort_order):
    table_html = get_model_names_html('sentence_similarity.csv', sort_order)
    task_diff_html = get_efficiency_diff_for_task('sentence_similarity.csv')
    return table_html, task_diff_html

def update_extractive_qa(sort_order):
    table_html = get_model_names_html('question_answering.csv', sort_order)
    task_diff_html = get_efficiency_diff_for_task('question_answering.csv')
    return table_html, task_diff_html

def update_all_tasks(sort_order):
    return get_all_model_names_html(sort_order)

# --- Build the Gradio Interface ---
demo = gr.Blocks(css="""
.gr-dataframe table {
    table-layout: fixed;
    width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
    max-width: 150px;
    white-space: nowrap;
    overflow: hidden;
    text-overflow: ellipsis;
}
.table-container {
    width: 100%;
    margin-left: auto;
    margin-right: auto;
}
""")

with demo:
    # --- Header Links ---
    gr.HTML(f'''
    <div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
        <a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Submission Portal</a>
        <a href="https://huggingface.co/spaces/AIEnergyScore/Label" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Label Generator</a>
        <a href="https://huggingface.github.io/AIEnergyScore/#faq" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">FAQ</a>
        <a href="https://huggingface.github.io/AIEnergyScore/#documentation" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Documentation</a>
        {get_zip_data_link()}
        <a href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Community</a>
    </div>
    ''')

    # --- Logo and Subtitle ---
    gr.HTML('''
    <div style="margin-top: 0px; text-align: center;">
        <img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png" 
             alt="Logo" 
             style="max-width: 300px; height: auto; margin-bottom: 10px;">
    </div>
    ''')
    gr.Markdown('<div style="text-align: center; font-size: 1.2em;">Welcome to the AI Energy Score leaderboard. Select different tasks to see scored models.</div>')
    
    # --- Callout Cards (Row at the Top) ---
    with gr.Row():
        all_models_card = gr.HTML(get_efficiency_diff_for_all())
        # Initially, we show the stats for text_generation as default for the selected task.
        selected_task_card = gr.HTML(get_efficiency_diff_for_task('text_generation.csv'))

    # --- Tabs for the Different Tasks ---
    with gr.Tabs():
        # --- Text Generation Tab ---
        with gr.TabItem("Text Generation πŸ’¬"):
            with gr.Row():
                model_class_options = [
                    "A (Single Consumer GPU) <20B parameters",
                    "B (Single Cloud GPU) 20-66B parameters",
                    "C (Multiple Cloud GPUs) >66B parameters"
                ]
                model_class_dropdown = gr.Dropdown(
                    choices=model_class_options,
                    label="Select Model Class",
                    value=model_class_options[0]
                )
                sort_dropdown_tg = gr.Dropdown(
                    choices=["Low to High", "High to Low"],
                    label="Sort",
                    value="Low to High"
                )
            # Two outputs: the table and the task callout card.
            tg_table = gr.HTML(get_text_generation_model_names_html("A", "Low to High"))
            model_class_dropdown.change(
                fn=update_text_generation, 
                inputs=[model_class_dropdown, sort_dropdown_tg], 
                outputs=[tg_table, selected_task_card]
            )
            sort_dropdown_tg.change(
                fn=update_text_generation, 
                inputs=[model_class_dropdown, sort_dropdown_tg], 
                outputs=[tg_table, selected_task_card]
            )
        
        # --- Image Generation Tab ---
        with gr.TabItem("Image Generation πŸ“·"):
            sort_dropdown_img = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            img_table = gr.HTML(get_model_names_html('image_generation.csv', "Low to High"))
            sort_dropdown_img.change(
                fn=update_image_generation, 
                inputs=sort_dropdown_img, 
                outputs=[img_table, selected_task_card]
            )
        
        # --- Text Classification Tab ---
        with gr.TabItem("Text Classification 🎭"):
            sort_dropdown_tc = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            tc_table = gr.HTML(get_model_names_html('text_classification.csv', "Low to High"))
            sort_dropdown_tc.change(
                fn=update_text_classification, 
                inputs=sort_dropdown_tc, 
                outputs=[tc_table, selected_task_card]
            )
        
        # --- Image Classification Tab ---
        with gr.TabItem("Image Classification πŸ–ΌοΈ"):
            sort_dropdown_ic = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            ic_table = gr.HTML(get_model_names_html('image_classification.csv', "Low to High"))
            sort_dropdown_ic.change(
                fn=update_image_classification, 
                inputs=sort_dropdown_ic, 
                outputs=[ic_table, selected_task_card]
            )
        
        # --- Image Captioning Tab ---
        with gr.TabItem("Image Captioning πŸ“"):
            sort_dropdown_icap = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            icap_table = gr.HTML(get_model_names_html('image_captioning.csv', "Low to High"))
            sort_dropdown_icap.change(
                fn=update_image_captioning, 
                inputs=sort_dropdown_icap, 
                outputs=[icap_table, selected_task_card]
            )
        
        # --- Summarization Tab ---
        with gr.TabItem("Summarization πŸ“ƒ"):
            sort_dropdown_sum = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            sum_table = gr.HTML(get_model_names_html('summarization.csv', "Low to High"))
            sort_dropdown_sum.change(
                fn=update_summarization, 
                inputs=sort_dropdown_sum, 
                outputs=[sum_table, selected_task_card]
            )
        
        # --- Automatic Speech Recognition Tab ---
        with gr.TabItem("Automatic Speech Recognition πŸ’¬"):
            sort_dropdown_asr = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            asr_table = gr.HTML(get_model_names_html('asr.csv', "Low to High"))
            sort_dropdown_asr.change(
                fn=update_asr, 
                inputs=sort_dropdown_asr, 
                outputs=[asr_table, selected_task_card]
            )
        
        # --- Object Detection Tab ---
        with gr.TabItem("Object Detection 🚘"):
            sort_dropdown_od = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            od_table = gr.HTML(get_model_names_html('object_detection.csv', "Low to High"))
            sort_dropdown_od.change(
                fn=update_object_detection, 
                inputs=sort_dropdown_od, 
                outputs=[od_table, selected_task_card]
            )
        
        # --- Sentence Similarity Tab ---
        with gr.TabItem("Sentence Similarity πŸ“š"):
            sort_dropdown_ss = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            ss_table = gr.HTML(get_model_names_html('sentence_similarity.csv', "Low to High"))
            sort_dropdown_ss.change(
                fn=update_sentence_similarity, 
                inputs=sort_dropdown_ss, 
                outputs=[ss_table, selected_task_card]
            )
        
        # --- Extractive QA Tab ---
        with gr.TabItem("Extractive QA ❔"):
            sort_dropdown_qa = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            qa_table = gr.HTML(get_model_names_html('question_answering.csv', "Low to High"))
            sort_dropdown_qa.change(
                fn=update_extractive_qa, 
                inputs=sort_dropdown_qa, 
                outputs=[qa_table, selected_task_card]
            )
        
        # --- All Tasks Tab (only table update) ---
        with gr.TabItem("All Tasks πŸ’‘"):
            sort_dropdown_all = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            all_table = gr.HTML(get_all_model_names_html("Low to High"))
            sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=all_table)
    
    with gr.Accordion("πŸ“™ Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            lines=10,
            show_copy_button=True,
        )
    gr.Markdown("Last updated: February 2025")

demo.launch()