Update app.py
Browse files
app.py
CHANGED
@@ -103,7 +103,7 @@ def process_video(video_path, true_label=None):
|
|
103 |
cnn_frame = cnn_frame.reshape(1, 28, 28, 1)
|
104 |
# Predict with cnn_model
|
105 |
cnn_pred = cnn_model.predict(cnn_frame)
|
106 |
-
cnn_label =
|
107 |
if cnn_label == 0:
|
108 |
cnn_class0 += 1
|
109 |
else:
|
@@ -115,7 +115,7 @@ def process_video(video_path, true_label=None):
|
|
115 |
q_frame = process_frame(frame)
|
116 |
# Predict with qcnn_model
|
117 |
qcnn_pred = qcnn_model.predict(q_frame)
|
118 |
-
qcnn_label =
|
119 |
if qcnn_label == 0:
|
120 |
qcnn_class0 += 1
|
121 |
else:
|
@@ -141,8 +141,8 @@ def process_video(video_path, true_label=None):
|
|
141 |
result = f"CNN Model Accuracy: {cnn_accuracy:.2f}%\n"
|
142 |
result += f"QCNN Model Accuracy: {qcnn_accuracy:.2f}%"
|
143 |
else:
|
144 |
-
result = f"CNN Model Predictions:\
|
145 |
-
result += f"QCNN Model Predictions:\
|
146 |
return result
|
147 |
|
148 |
def predict(video_input):
|
@@ -192,7 +192,7 @@ with gr.Blocks() as demo:
|
|
192 |
)
|
193 |
with gr.Column():
|
194 |
output = gr.Textbox(label="Result")
|
195 |
-
predict_button = gr.Button("Predict")
|
196 |
|
197 |
predict_button.click(fn=predict, inputs=video_input, outputs=output)
|
198 |
demo.launch()
|
|
|
103 |
cnn_frame = cnn_frame.reshape(1, 28, 28, 1)
|
104 |
# Predict with cnn_model
|
105 |
cnn_pred = cnn_model.predict(cnn_frame)
|
106 |
+
cnn_label = (cnn_pred > 0.5).astype(int)
|
107 |
if cnn_label == 0:
|
108 |
cnn_class0 += 1
|
109 |
else:
|
|
|
115 |
q_frame = process_frame(frame)
|
116 |
# Predict with qcnn_model
|
117 |
qcnn_pred = qcnn_model.predict(q_frame)
|
118 |
+
qcnn_label = (qcnn_pred > 0.5).astype(int)
|
119 |
if qcnn_label == 0:
|
120 |
qcnn_class0 += 1
|
121 |
else:
|
|
|
141 |
result = f"CNN Model Accuracy: {cnn_accuracy:.2f}%\n"
|
142 |
result += f"QCNN Model Accuracy: {qcnn_accuracy:.2f}%"
|
143 |
else:
|
144 |
+
result = f"CNN Model Predictions:\nClass 0: {cnn_class0_percent:.2f}%\nClass 1: {cnn_class1_percent:.2f}%\n"
|
145 |
+
result += f"QCNN Model Predictions:\nClass 0: {qcnn_class0_percent:.2f}%\nClass 1: {qcnn_class1_percent:.2f}%"
|
146 |
return result
|
147 |
|
148 |
def predict(video_input):
|
|
|
192 |
)
|
193 |
with gr.Column():
|
194 |
output = gr.Textbox(label="Result")
|
195 |
+
predict_button = gr.Button("Predict", elem_classes="gr-button")
|
196 |
|
197 |
predict_button.click(fn=predict, inputs=video_input, outputs=output)
|
198 |
demo.launch()
|