Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
-
import
|
5 |
import os
|
6 |
-
from PIL import Image
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
# Directories containing example videos
|
10 |
examples_dir = 'examples'
|
@@ -13,16 +15,25 @@ deepfake_roop_dir = os.path.join(examples_dir, 'DeepfakeRoop')
|
|
13 |
deepfake_web_dir = os.path.join(examples_dir, 'DeepfakeWeb')
|
14 |
|
15 |
# Function to get video paths from a directory
|
16 |
-
def get_video_paths(directory):
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Get video paths for each category
|
20 |
-
original_videos = get_video_paths(original_dir)
|
21 |
-
deepfake_roop_videos = get_video_paths(deepfake_roop_dir)
|
22 |
-
deepfake_web_videos = get_video_paths(deepfake_web_dir)
|
23 |
|
24 |
-
#
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
26 |
cap = cv2.VideoCapture(video_path)
|
27 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
28 |
if fps == 0 or np.isnan(fps):
|
@@ -46,109 +57,89 @@ def process_video(video_path, true_label):
|
|
46 |
|
47 |
cnn_correct = 0
|
48 |
qcnn_correct = 0
|
|
|
|
|
|
|
|
|
49 |
total_frames = len(sampled_frames)
|
50 |
for frame in sampled_frames:
|
51 |
cnn_pred = cnn_model.predict(frame)
|
52 |
cnn_label = np.argmax(cnn_pred)
|
53 |
-
if cnn_label ==
|
|
|
|
|
|
|
|
|
54 |
cnn_correct += 1
|
|
|
55 |
qcnn_pred = qcnn_model.predict(frame)
|
56 |
qcnn_label = np.argmax(qcnn_pred)
|
57 |
-
if qcnn_label ==
|
|
|
|
|
|
|
|
|
58 |
qcnn_correct += 1
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
return result
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
return "
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
# Create Gradio interface
|
86 |
with gr.Blocks() as demo:
|
87 |
-
|
88 |
-
gr.
|
89 |
-
|
90 |
-
|
91 |
-
# Step 1: Original Videos
|
92 |
-
gr.Markdown("## Step 1: Select an Original Video")
|
93 |
-
with gr.Row():
|
94 |
-
with gr.Column():
|
95 |
-
original_video = gr.Dropdown(
|
96 |
-
choices=original_videos,
|
97 |
-
label="Select Original Video",
|
98 |
-
interactive=True
|
99 |
-
)
|
100 |
-
predict_button1 = gr.Button("Predict")
|
101 |
-
with gr.Column():
|
102 |
-
output1 = gr.Textbox(label="Result")
|
103 |
-
predict_button1.click(fn=predict_step1, inputs=original_video, outputs=output1)
|
104 |
-
|
105 |
-
# Step 2: Deepfake Videos from DeepfakeWeb
|
106 |
-
gr.Markdown("## Step 2: Select a Deepfake Video Generated Using DeepfakeWeb")
|
107 |
-
with gr.Row():
|
108 |
-
with gr.Column():
|
109 |
-
deepfake_web_video = gr.Dropdown(
|
110 |
-
choices=deepfake_web_videos,
|
111 |
-
label="Select DeepfakeWeb Video",
|
112 |
-
interactive=True
|
113 |
-
)
|
114 |
-
predict_button2 = gr.Button("Predict")
|
115 |
-
with gr.Column():
|
116 |
-
output2 = gr.Textbox(label="Result")
|
117 |
-
predict_button2.click(fn=predict_step2, inputs=deepfake_web_video, outputs=output2)
|
118 |
-
|
119 |
-
# Step 3: Deepfake Videos from Roop Method
|
120 |
-
gr.Markdown("## Step 3: Select a Deepfake Video Generated Using the Roop Method")
|
121 |
with gr.Row():
|
122 |
with gr.Column():
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
127 |
)
|
128 |
-
|
129 |
with gr.Column():
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
gr.Markdown("### Original Videos")
|
136 |
-
gr.Examples(
|
137 |
-
examples=original_videos,
|
138 |
-
inputs=original_video,
|
139 |
-
label="Original Video Examples"
|
140 |
-
)
|
141 |
-
gr.Markdown("### DeepfakeWeb Videos")
|
142 |
-
gr.Examples(
|
143 |
-
examples=deepfake_web_videos,
|
144 |
-
inputs=deepfake_web_video,
|
145 |
-
label="DeepfakeWeb Video Examples"
|
146 |
-
)
|
147 |
-
gr.Markdown("### DeepfakeRoop Videos")
|
148 |
-
gr.Examples(
|
149 |
-
examples=deepfake_roop_videos,
|
150 |
-
inputs=deepfake_roop_video,
|
151 |
-
label="DeepfakeRoop Video Examples"
|
152 |
-
)
|
153 |
-
|
154 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
import os
|
|
|
6 |
|
7 |
+
# Load the trained models using Keras
|
8 |
+
cnn_model = tf.keras.models.load_model('cnn_model.h5')
|
9 |
+
qcnn_model = tf.keras.models.load_model('qcnn_model.h5')
|
10 |
|
11 |
# Directories containing example videos
|
12 |
examples_dir = 'examples'
|
|
|
15 |
deepfake_web_dir = os.path.join(examples_dir, 'DeepfakeWeb')
|
16 |
|
17 |
# Function to get video paths from a directory
|
18 |
+
def get_video_paths(directory, label):
|
19 |
+
videos = []
|
20 |
+
for vid in os.listdir(directory):
|
21 |
+
if vid.endswith('.mp4'):
|
22 |
+
videos.append({'path': os.path.join(directory, vid), 'label': label})
|
23 |
+
return videos
|
24 |
|
25 |
# Get video paths for each category
|
26 |
+
original_videos = get_video_paths(original_dir, 'Original')
|
27 |
+
deepfake_roop_videos = get_video_paths(deepfake_roop_dir, 'DeepfakeRoop')
|
28 |
+
deepfake_web_videos = get_video_paths(deepfake_web_dir, 'DeepfakeWeb')
|
29 |
|
30 |
+
# Combine all examples
|
31 |
+
examples = original_videos + deepfake_roop_videos + deepfake_web_videos
|
32 |
+
|
33 |
+
# Map from example video path to label
|
34 |
+
example_videos_dict = {example['path']: example['label'] for example in examples}
|
35 |
+
|
36 |
+
def process_video(video_path, true_label=None):
|
37 |
cap = cv2.VideoCapture(video_path)
|
38 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
39 |
if fps == 0 or np.isnan(fps):
|
|
|
57 |
|
58 |
cnn_correct = 0
|
59 |
qcnn_correct = 0
|
60 |
+
cnn_class0 = 0
|
61 |
+
cnn_class1 = 0
|
62 |
+
qcnn_class0 = 0
|
63 |
+
qcnn_class1 = 0
|
64 |
total_frames = len(sampled_frames)
|
65 |
for frame in sampled_frames:
|
66 |
cnn_pred = cnn_model.predict(frame)
|
67 |
cnn_label = np.argmax(cnn_pred)
|
68 |
+
if cnn_label == 0:
|
69 |
+
cnn_class0 += 1
|
70 |
+
else:
|
71 |
+
cnn_class1 += 1
|
72 |
+
if true_label is not None and cnn_label == true_label:
|
73 |
cnn_correct += 1
|
74 |
+
|
75 |
qcnn_pred = qcnn_model.predict(frame)
|
76 |
qcnn_label = np.argmax(qcnn_pred)
|
77 |
+
if qcnn_label == 0:
|
78 |
+
qcnn_class0 += 1
|
79 |
+
else:
|
80 |
+
qcnn_class1 += 1
|
81 |
+
if true_label is not None and qcnn_label == true_label:
|
82 |
qcnn_correct += 1
|
83 |
|
84 |
+
if total_frames > 0:
|
85 |
+
cnn_class0_percent = (cnn_class0 / total_frames) * 100
|
86 |
+
cnn_class1_percent = (cnn_class1 / total_frames) * 100
|
87 |
+
qcnn_class0_percent = (qcnn_class0 / total_frames) * 100
|
88 |
+
qcnn_class1_percent = (qcnn_class1 / total_frames) * 100
|
89 |
+
else:
|
90 |
+
cnn_class0_percent = cnn_class1_percent = qcnn_class0_percent = qcnn_class1_percent = 0
|
91 |
|
92 |
+
if true_label is not None:
|
93 |
+
# Calculate accuracy if true_label is provided (example video)
|
94 |
+
cnn_accuracy = (cnn_correct / total_frames) * 100 if total_frames > 0 else 0
|
95 |
+
qcnn_accuracy = (qcnn_correct / total_frames) * 100 if total_frames > 0 else 0
|
96 |
+
result = f"CNN Model Accuracy: {cnn_accuracy:.2f}%\n"
|
97 |
+
result += f"QCNN Model Accuracy: {qcnn_accuracy:.2f}%"
|
98 |
+
else:
|
99 |
+
# Display percent of frames classified from each class
|
100 |
+
result = f"CNN Model Predictions:\nClass 0: {cnn_class0_percent:.2f}%\nClass 1: {cnn_class1_percent:.2f}%\n"
|
101 |
+
result += f"QCNN Model Predictions:\nClass 0: {qcnn_class0_percent:.2f}%\nClass 1: {qcnn_class1_percent:.2f}%"
|
102 |
return result
|
103 |
|
104 |
+
def predict(video_input):
|
105 |
+
if video_input is None:
|
106 |
+
return "Please upload a video or select an example."
|
107 |
+
if isinstance(video_input, dict):
|
108 |
+
video_path = video_input['name']
|
109 |
+
elif isinstance(video_input, str):
|
110 |
+
video_path = video_input
|
111 |
+
else:
|
112 |
+
return "Invalid video input."
|
113 |
+
|
114 |
+
# Check if video is an example
|
115 |
+
if video_path in example_videos_dict:
|
116 |
+
label = example_videos_dict[video_path]
|
117 |
+
if label == 'Original':
|
118 |
+
true_label = 0
|
119 |
+
else:
|
120 |
+
true_label = 1
|
121 |
+
result = process_video(video_path, true_label=true_label)
|
122 |
+
result = f"Example Video Detected ({label})\n" + result
|
123 |
+
else:
|
124 |
+
result = process_video(video_path)
|
125 |
+
return result
|
126 |
|
|
|
127 |
with gr.Blocks() as demo:
|
128 |
+
gr.Markdown("<h1 style='text-align: center;'>Quanvolutional Neural Networks for Deepfake Detection</h1>")
|
129 |
+
gr.Markdown("<h2 style='text-align: center;'>Steven Fernandes, Ph.D.</h2>")
|
130 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
with gr.Row():
|
132 |
with gr.Column():
|
133 |
+
video_input = gr.Video(label="Upload Video or Select an Example", type="filepath")
|
134 |
+
gr.Examples(
|
135 |
+
examples=[example['path'] for example in examples],
|
136 |
+
inputs=video_input,
|
137 |
+
label="Examples"
|
138 |
)
|
139 |
+
predict_button = gr.Button("Predict")
|
140 |
with gr.Column():
|
141 |
+
output = gr.Textbox(label="Result")
|
142 |
+
|
143 |
+
predict_button.click(fn=predict, inputs=video_input, outputs=output)
|
144 |
+
|
145 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|