Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
import os
|
5 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain.chains.question_answering import load_qa_chain
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
#from dotenv import load_dotenv
|
11 |
+
|
12 |
+
|
13 |
+
#load_dotenv()
|
14 |
+
API_KEYS = [os.getenv("APIKEY1"), os.getenv("APIKEY2")]
|
15 |
+
current_key_index = -1
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
def switch_api_key():
|
21 |
+
global current_key_index
|
22 |
+
current_key_index = (current_key_index + 1) % len(API_KEYS)
|
23 |
+
return API_KEYS[current_key_index]
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
def get_pdf_text(pdf_docs):
|
29 |
+
text = ""
|
30 |
+
for pdf in pdf_docs:
|
31 |
+
pdf_reader = PdfReader(pdf)
|
32 |
+
for page in pdf_reader.pages:
|
33 |
+
text += page.extract_text()
|
34 |
+
return text
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
def get_text_chunks(text):
|
40 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
41 |
+
return text_splitter.split_text(text)
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
def get_vector_store(text_chunks):
|
47 |
+
api_key = switch_api_key()
|
48 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
49 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
50 |
+
vector_store.save_local("faiss_index")
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
def get_conversational_chain():
|
56 |
+
api_key = switch_api_key()
|
57 |
+
prompt_template = """
|
58 |
+
You are a helpful assistant that only answers based on the context provided from the PDF documents.
|
59 |
+
Do not use any external knowledge or assumptions. If the answer is not found in the context below, reply with "I don't know."
|
60 |
+
|
61 |
+
|
62 |
+
Context:
|
63 |
+
{context}
|
64 |
+
|
65 |
+
|
66 |
+
Question:
|
67 |
+
{question}
|
68 |
+
|
69 |
+
|
70 |
+
Answer:
|
71 |
+
"""
|
72 |
+
model = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0, google_api_key=api_key)
|
73 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
74 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
75 |
+
return chain
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
def user_input(user_question):
|
81 |
+
api_key = switch_api_key()
|
82 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key)
|
83 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
84 |
+
docs = new_db.similarity_search(user_question)
|
85 |
+
chain = get_conversational_chain()
|
86 |
+
|
87 |
+
|
88 |
+
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
89 |
+
st.write("Reply: ", response["output_text"])
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
# Streamlit application
|
95 |
+
def main():
|
96 |
+
st.set_page_config("Chat PDF")
|
97 |
+
st.header("CSC 121: Computers and Scientific Thinking (Chatbot)")
|
98 |
+
st.subheader("Ask a question ONLY from the CSC 121 textbook of Dr. Reed")
|
99 |
+
|
100 |
+
|
101 |
+
user_question = st.text_input("Ask a question")
|
102 |
+
|
103 |
+
|
104 |
+
if user_question:
|
105 |
+
user_input(user_question)
|
106 |
+
|
107 |
+
|
108 |
+
pdf_docs = st.file_uploader("Upload PDF files", accept_multiple_files=True)
|
109 |
+
if st.button("Submit & Process"):
|
110 |
+
with st.spinner("Processing..."):
|
111 |
+
raw_text = get_pdf_text(pdf_docs)
|
112 |
+
text_chunks = get_text_chunks(raw_text)
|
113 |
+
get_vector_store(text_chunks)
|
114 |
+
st.success("Done")
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
main()
|