Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, BitsAndBytesConfig
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
import gradio_client.utils as client_utils
|
7 |
+
import sys
|
8 |
+
|
9 |
+
|
10 |
+
# ===============================
|
11 |
+
# Device and Model Setup
|
12 |
+
# ===============================
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
hf_token = os.environ["HF_TOKEN"]
|
15 |
+
|
16 |
+
#Load the model
|
17 |
+
model_path = "AI-Mock-Interviewer/T5"
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
20 |
+
model.to(device)
|
21 |
+
|
22 |
+
model = torch.compile(model)
|
23 |
+
|
24 |
+
# ------------------- UPDATED SYSTEM PROMPT -------------------
|
25 |
+
system_prompt = """
|
26 |
+
You are conducting a mock technical interview. The candidate's experience level can be entry-level, mid-level, or senior-level. Generate questions and follow-up questions based on the domain and the candidate's experience level. Consider these aspects:
|
27 |
+
1. The question should be relevant to the domain (e.g., software engineering, machine learning) and appropriate for the candidate's experience level.
|
28 |
+
2. Ensure each question is unique and does not repeat previously asked questions.
|
29 |
+
3. Ensure each question covers a different sub-topic within the domain, avoiding redundancy.
|
30 |
+
4. If no clear follow-up can be derived, generate a fresh, related question from a different aspect of the domain.
|
31 |
+
Important: Ensure that each question is clear, concise, and allows the candidate to demonstrate their technical and communicative abilities effectively.
|
32 |
+
"""
|
33 |
+
|
34 |
+
# Define sub-topic categories for different domains
|
35 |
+
subtopic_keywords = {
|
36 |
+
"data analysis": [
|
37 |
+
"data cleaning", "missing data", "outliers",
|
38 |
+
"feature engineering", "EDA", "trend analysis",
|
39 |
+
"data visualization"
|
40 |
+
],
|
41 |
+
"machine learning": [
|
42 |
+
"supervised learning", "unsupervised learning",
|
43 |
+
"model evaluation", "bias-variance tradeoff",
|
44 |
+
"overfitting", "hyperparameter tuning"
|
45 |
+
],
|
46 |
+
"software engineering": [
|
47 |
+
"agile methodology", "code optimization",
|
48 |
+
"design patterns", "database design",
|
49 |
+
"testing strategies"
|
50 |
+
],
|
51 |
+
}
|
52 |
+
|
53 |
+
def identify_subtopic(question, domain):
|
54 |
+
"""Identify the sub-topic of a question using predefined keywords."""
|
55 |
+
domain = domain.lower()
|
56 |
+
if domain in subtopic_keywords:
|
57 |
+
for subtopic in subtopic_keywords[domain]:
|
58 |
+
if subtopic in question.lower():
|
59 |
+
return subtopic
|
60 |
+
return None
|
61 |
+
|
62 |
+
# We'll keep global sets here only if needed as a fallback:
|
63 |
+
asked_questions = set()
|
64 |
+
asked_subtopics = set()
|
65 |
+
|
66 |
+
def generate_question(prompt, domain, state=None):
|
67 |
+
"""
|
68 |
+
Generates a unique question based on the prompt and domain.
|
69 |
+
Uses 'state' to track uniqueness in the conversation session.
|
70 |
+
"""
|
71 |
+
while True:
|
72 |
+
full_prompt = system_prompt + "\n" + prompt
|
73 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(device)
|
74 |
+
outputs = model.generate(
|
75 |
+
inputs["input_ids"],
|
76 |
+
max_new_tokens=50,
|
77 |
+
num_return_sequences=1,
|
78 |
+
no_repeat_ngram_size=2,
|
79 |
+
top_k=30,
|
80 |
+
top_p=0.9,
|
81 |
+
temperature=0.7,
|
82 |
+
do_sample=True,
|
83 |
+
pad_token_id=tokenizer.eos_token_id,
|
84 |
+
)
|
85 |
+
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
86 |
+
question = question.replace(full_prompt, "").strip()
|
87 |
+
|
88 |
+
# Ensure question ends with a question mark
|
89 |
+
if not question.endswith("?"):
|
90 |
+
question = question.split("?")[0] + "?"
|
91 |
+
|
92 |
+
# Identify the subtopic
|
93 |
+
subtopic = identify_subtopic(question, domain)
|
94 |
+
|
95 |
+
if state is not None:
|
96 |
+
# Use session-level sets to ensure uniqueness
|
97 |
+
if (question not in state["asked_questions"] and
|
98 |
+
(subtopic is None or subtopic not in state["asked_subtopics"])):
|
99 |
+
state["asked_questions"].add(question)
|
100 |
+
if subtopic:
|
101 |
+
state["asked_subtopics"].add(subtopic)
|
102 |
+
return question
|
103 |
+
else:
|
104 |
+
# Fallback to global sets if no state is provided
|
105 |
+
if question not in asked_questions and (subtopic is None or subtopic not in asked_subtopics):
|
106 |
+
asked_questions.add(question)
|
107 |
+
if subtopic:
|
108 |
+
asked_subtopics.add(subtopic)
|
109 |
+
return question
|
110 |
+
|
111 |
+
def reset_state(domain, company, level):
|
112 |
+
"""
|
113 |
+
Resets or initializes the session state.
|
114 |
+
"""
|
115 |
+
return {
|
116 |
+
"domain": domain,
|
117 |
+
"company": company,
|
118 |
+
"level": level,
|
119 |
+
"asked_questions": set(),
|
120 |
+
"asked_subtopics": set(),
|
121 |
+
"conversation": [] # List of (speaker, message) tuples
|
122 |
+
}
|
123 |
+
|
124 |
+
def start_interview(domain, company, level):
|
125 |
+
"""
|
126 |
+
Initializes a new interactive interview session with the first question.
|
127 |
+
"""
|
128 |
+
state = reset_state(domain, company, level)
|
129 |
+
prompt = (f"Domain: {domain}. "
|
130 |
+
+ (f"Company: {company}. " if company else "")
|
131 |
+
+ f"Candidate experience level: {level}. "
|
132 |
+
"Generate the first question:")
|
133 |
+
|
134 |
+
question = generate_question(prompt, domain, state)
|
135 |
+
state["conversation"].append(("Interviewer", question))
|
136 |
+
return state["conversation"], state
|
137 |
+
|
138 |
+
def submit_response(candidate_response, state):
|
139 |
+
"""
|
140 |
+
Accepts the candidate's response, updates conversation, generates the next question.
|
141 |
+
Allows quitting the interview by typing 'quit'.
|
142 |
+
"""
|
143 |
+
if candidate_response.strip().lower() == "quit":
|
144 |
+
state["conversation"].append(("Candidate", candidate_response))
|
145 |
+
state["conversation"].append(("Interviewer", "Interview session has ended. Thank you for participating!"))
|
146 |
+
return state["conversation"], state
|
147 |
+
|
148 |
+
state["conversation"].append(("Candidate", candidate_response))
|
149 |
+
prompt = (f"Domain: {state['domain']}. "
|
150 |
+
f"Candidate's experience level: {state['level']}. "
|
151 |
+
"Generate the next interview question:")
|
152 |
+
|
153 |
+
question = generate_question(prompt, state["domain"], state)
|
154 |
+
state["conversation"].append(("Interviewer", question))
|
155 |
+
return state["conversation"], state
|
156 |
+
|
157 |
+
# Build an interactive Gradio interface using Blocks
|
158 |
+
with gr.Blocks() as demo:
|
159 |
+
gr.Markdown("# Interactive Mock Interview")
|
160 |
+
with gr.Row():
|
161 |
+
domain_input = gr.Textbox(label="Domain", placeholder="e.g. Software Engineering")
|
162 |
+
company_input = gr.Textbox(label="Company (Optional)", placeholder="e.g. Google")
|
163 |
+
level_input = gr.Dropdown(
|
164 |
+
label="Experience Level",
|
165 |
+
choices=["Entry-Level", "Mid-Level", "Senior-Level"],
|
166 |
+
value="Entry-Level"
|
167 |
+
)
|
168 |
+
|
169 |
+
start_button = gr.Button("Start Interview")
|
170 |
+
chatbot = gr.Chatbot(label="Interview Conversation")
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
response_input = gr.Textbox(label="Your Response", placeholder="Type 'quit' to end the interview")
|
174 |
+
submit_button = gr.Button("Submit")
|
175 |
+
|
176 |
+
# State to hold session data
|
177 |
+
state = gr.State()
|
178 |
+
|
179 |
+
# Start interview
|
180 |
+
start_button.click(
|
181 |
+
start_interview,
|
182 |
+
inputs=[domain_input, company_input, level_input],
|
183 |
+
outputs=[chatbot, state]
|
184 |
+
)
|
185 |
+
|
186 |
+
# Submit response
|
187 |
+
submit_button.click(
|
188 |
+
submit_response,
|
189 |
+
inputs=[response_input, state],
|
190 |
+
outputs=[chatbot, state]
|
191 |
+
).then(
|
192 |
+
lambda: "", None, response_input # Clear input box after submission
|
193 |
+
)
|
194 |
+
|
195 |
+
|
196 |
+
demo.launch()
|