Spaces:
Running
Running
changes made to app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,36 @@
|
|
1 |
-
import json
|
2 |
import gradio as gr
|
3 |
-
from transformers import AutoTokenizer,
|
4 |
import torch
|
5 |
import os
|
6 |
-
import sys
|
7 |
|
8 |
-
|
9 |
-
# ===============================
|
10 |
-
# Device and Model Setup
|
11 |
-
# ===============================
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
-
hf_token = os.environ.get("HF_TOKEN", None)
|
14 |
|
15 |
-
#
|
16 |
-
model_path = "AI-Mock-Interviewer/T5"
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
18 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
19 |
-
model.to(device)
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
|
24 |
|
25 |
-
#
|
26 |
system_prompt = """
|
27 |
-
You are conducting a mock technical interview.
|
28 |
-
1. The question should be relevant to the domain (e.g., software engineering, machine learning)
|
29 |
-
2.
|
30 |
-
3.
|
31 |
-
4.
|
|
|
|
|
32 |
Important: Ensure that each question is clear, concise, and allows the candidate to demonstrate their technical and communicative abilities effectively.
|
33 |
"""
|
34 |
|
35 |
# Define sub-topic categories for different domains
|
36 |
subtopic_keywords = {
|
37 |
-
"data analysis": [
|
38 |
-
|
39 |
-
|
40 |
-
"data visualization"
|
41 |
-
],
|
42 |
-
"machine learning": [
|
43 |
-
"supervised learning", "unsupervised learning",
|
44 |
-
"model evaluation", "bias-variance tradeoff",
|
45 |
-
"overfitting", "hyperparameter tuning"
|
46 |
-
],
|
47 |
-
"software engineering": [
|
48 |
-
"agile methodology", "code optimization",
|
49 |
-
"design patterns", "database design",
|
50 |
-
"testing strategies"
|
51 |
-
],
|
52 |
}
|
53 |
|
54 |
def identify_subtopic(question, domain):
|
@@ -60,17 +42,12 @@ def identify_subtopic(question, domain):
|
|
60 |
return subtopic
|
61 |
return None
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
Generates a unique question based on the prompt and domain.
|
70 |
-
Uses 'state' to track uniqueness in the conversation session.
|
71 |
-
"""
|
72 |
-
while True:
|
73 |
-
full_prompt = system_prompt + "\n" + prompt
|
74 |
inputs = tokenizer(full_prompt, return_tensors="pt").to(device)
|
75 |
outputs = model.generate(
|
76 |
inputs["input_ids"],
|
@@ -83,115 +60,72 @@ def generate_question(prompt, domain, state=None):
|
|
83 |
do_sample=True,
|
84 |
pad_token_id=tokenizer.eos_token_id,
|
85 |
)
|
86 |
-
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
87 |
-
question = question.replace(full_prompt, "").strip()
|
88 |
-
|
89 |
-
# Ensure question ends with a question mark
|
90 |
if not question.endswith("?"):
|
91 |
question = question.split("?")[0] + "?"
|
92 |
-
|
93 |
-
# Identify the subtopic
|
94 |
subtopic = identify_subtopic(question, domain)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
if
|
99 |
-
(subtopic is None or subtopic not in state["asked_subtopics"])):
|
100 |
state["asked_questions"].add(question)
|
101 |
if subtopic:
|
102 |
state["asked_subtopics"].add(subtopic)
|
103 |
return question
|
104 |
-
else:
|
105 |
-
# Fallback to global sets if no state is provided
|
106 |
-
if question not in asked_questions and (subtopic is None or subtopic not in asked_subtopics):
|
107 |
-
asked_questions.add(question)
|
108 |
-
if subtopic:
|
109 |
-
asked_subtopics.add(subtopic)
|
110 |
-
return question
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
"""
|
116 |
return {
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
"conversation": [] # List of {"role": ..., "content": ...}
|
123 |
}
|
124 |
|
125 |
-
def start_interview(domain, company
|
126 |
-
"""
|
127 |
-
|
128 |
-
"""
|
129 |
-
state = reset_state(domain, company, level)
|
130 |
-
prompt = (f"Domain: {domain}. "
|
131 |
-
+ (f"Company: {company}. " if company else "")
|
132 |
-
+ f"Candidate experience level: {level}. "
|
133 |
-
"Generate the first question:")
|
134 |
-
|
135 |
question = generate_question(prompt, domain, state)
|
136 |
-
state["conversation"].append(
|
137 |
return state["conversation"], state
|
138 |
|
139 |
def submit_response(candidate_response, state):
|
140 |
-
"""
|
141 |
-
|
142 |
-
|
143 |
-
"""
|
144 |
-
if candidate_response.strip().lower() == "quit":
|
145 |
-
state["conversation"].append({"role": "Candidate", "content": candidate_response})
|
146 |
-
state["conversation"].append({"role": "Interviewer", "content": "Interview session has ended. Thank you for participating!"})
|
147 |
-
return state["conversation"], state
|
148 |
-
|
149 |
-
state["conversation"].append({"role": "Candidate", "content": candidate_response})
|
150 |
-
prompt = (f"Domain: {state['domain']}. "
|
151 |
-
f"Candidate's experience level: {state['level']}. "
|
152 |
-
"Generate the next interview question:")
|
153 |
-
|
154 |
question = generate_question(prompt, state["domain"], state)
|
155 |
-
state["conversation"].append(
|
156 |
return state["conversation"], state
|
157 |
|
158 |
# Build an interactive Gradio interface using Blocks
|
159 |
with gr.Blocks() as demo:
|
160 |
gr.Markdown("# Interactive Mock Interview")
|
|
|
161 |
with gr.Row():
|
162 |
-
domain_input = gr.Textbox(label="Domain"
|
163 |
-
company_input = gr.Textbox(label="Company (Optional)"
|
164 |
-
|
165 |
-
label="Experience Level",
|
166 |
-
choices=["Entry-Level", "Mid-Level", "Senior-Level"],
|
167 |
-
value="Entry-Level"
|
168 |
-
)
|
169 |
-
|
170 |
start_button = gr.Button("Start Interview")
|
171 |
-
chatbot = gr.Chatbot(label="Interview Conversation"
|
172 |
-
|
173 |
with gr.Row():
|
174 |
-
response_input = gr.Textbox(label="Your Response"
|
175 |
submit_button = gr.Button("Submit")
|
176 |
-
|
177 |
-
#
|
178 |
-
state = gr.State()
|
179 |
-
|
180 |
-
#
|
181 |
-
start_button.click(
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
# Submit response
|
188 |
-
submit_button.click(
|
189 |
-
submit_response,
|
190 |
-
inputs=[response_input, state],
|
191 |
-
outputs=[chatbot, state]
|
192 |
-
).then(
|
193 |
-
lambda: "", None, response_input # Clear input box after submission
|
194 |
)
|
195 |
|
196 |
-
|
197 |
-
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
3 |
import torch
|
4 |
import os
|
|
|
5 |
|
6 |
+
# Set up device
|
|
|
|
|
|
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
8 |
|
9 |
+
#access_token = os.getenv["HF_TOKEN"]
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Load model and tokenizer
|
12 |
+
model_name = "vai0511/flan-t5-ai-mock-interviewer"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
15 |
|
16 |
|
17 |
+
# System prompt to guide the interview generation
|
18 |
system_prompt = """
|
19 |
+
You are conducting a mock technical interview. Generate questions and follow-up questions based on the domain provided. Consider these aspects:
|
20 |
+
1. The question should be relevant to the domain (e.g., software engineering, machine learning).
|
21 |
+
2. For follow-up questions, analyze the candidate's last response and ask questions that probe deeper into their understanding, challenge their approach, or request clarification.
|
22 |
+
3. The follow-up question should aim to explore the candidate's depth of knowledge and ability to adapt.
|
23 |
+
4. Ensure each question is unique and does not repeat previously asked questions.
|
24 |
+
5. Ensure each question covers a different sub-topic within the domain, avoiding redundancy.
|
25 |
+
6. If no clear follow-up can be derived, generate a fresh, related question from a different aspect of the domain.
|
26 |
Important: Ensure that each question is clear, concise, and allows the candidate to demonstrate their technical and communicative abilities effectively.
|
27 |
"""
|
28 |
|
29 |
# Define sub-topic categories for different domains
|
30 |
subtopic_keywords = {
|
31 |
+
"data analysis": ["data cleaning", "missing data", "outliers", "feature engineering", "EDA", "trend analysis", "data visualization"],
|
32 |
+
"machine learning": ["supervised learning", "unsupervised learning", "model evaluation", "bias-variance tradeoff", "overfitting", "hyperparameter tuning"],
|
33 |
+
"software engineering": ["agile methodology", "code optimization", "design patterns", "database design", "testing strategies"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
}
|
35 |
|
36 |
def identify_subtopic(question, domain):
|
|
|
42 |
return subtopic
|
43 |
return None
|
44 |
|
45 |
+
def generate_question(prompt, domain, state=None, max_attempts=10):
|
46 |
+
"""Generate a unique interview question while ensuring no repetition."""
|
47 |
+
attempts = 0
|
48 |
+
while attempts < max_attempts:
|
49 |
+
attempts += 1
|
50 |
+
full_prompt = f"{system_prompt.strip()}\n{prompt.strip()}"
|
|
|
|
|
|
|
|
|
|
|
51 |
inputs = tokenizer(full_prompt, return_tensors="pt").to(device)
|
52 |
outputs = model.generate(
|
53 |
inputs["input_ids"],
|
|
|
60 |
do_sample=True,
|
61 |
pad_token_id=tokenizer.eos_token_id,
|
62 |
)
|
63 |
+
question = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
|
|
|
|
|
|
64 |
if not question.endswith("?"):
|
65 |
question = question.split("?")[0] + "?"
|
66 |
+
|
|
|
67 |
subtopic = identify_subtopic(question, domain)
|
68 |
|
69 |
+
# Ensure uniqueness within the session state
|
70 |
+
if state:
|
71 |
+
if question not in state["asked_questions"] and (subtopic is None or subtopic not in state["asked_subtopics"]):
|
|
|
72 |
state["asked_questions"].add(question)
|
73 |
if subtopic:
|
74 |
state["asked_subtopics"].add(subtopic)
|
75 |
return question
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
raise RuntimeError("Failed to generate a unique question after multiple attempts.")
|
78 |
+
|
79 |
+
def reset_state(domain, company):
|
80 |
+
"""Reset session state for a new interview."""
|
81 |
return {
|
82 |
+
"domain": domain,
|
83 |
+
"company": company,
|
84 |
+
"asked_questions": set(),
|
85 |
+
"asked_subtopics": set(),
|
86 |
+
"conversation": [] # List of tuples: (speaker, message)
|
|
|
87 |
}
|
88 |
|
89 |
+
def start_interview(domain, company):
|
90 |
+
"""Start a new interview session."""
|
91 |
+
state = reset_state(domain, company)
|
92 |
+
prompt = f"Domain: {domain}. " + (f"Company: {company}. " if company else "") + "Generate the first question:"
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
question = generate_question(prompt, domain, state)
|
94 |
+
state["conversation"].append(("Interviewer", question))
|
95 |
return state["conversation"], state
|
96 |
|
97 |
def submit_response(candidate_response, state):
|
98 |
+
"""Accept the candidate's response, update the conversation, and generate a follow-up question."""
|
99 |
+
state["conversation"].append(("Candidate", candidate_response))
|
100 |
+
prompt = f"Domain: {state['domain']}. Candidate's last response: {candidate_response}. Generate a follow-up question with a new perspective:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
question = generate_question(prompt, state["domain"], state)
|
102 |
+
state["conversation"].append(("Interviewer", question))
|
103 |
return state["conversation"], state
|
104 |
|
105 |
# Build an interactive Gradio interface using Blocks
|
106 |
with gr.Blocks() as demo:
|
107 |
gr.Markdown("# Interactive Mock Interview")
|
108 |
+
|
109 |
with gr.Row():
|
110 |
+
domain_input = gr.Textbox(label="Domain")
|
111 |
+
company_input = gr.Textbox(label="Company (Optional)")
|
112 |
+
|
|
|
|
|
|
|
|
|
|
|
113 |
start_button = gr.Button("Start Interview")
|
114 |
+
chatbot = gr.Chatbot(label="Interview Conversation")
|
115 |
+
|
116 |
with gr.Row():
|
117 |
+
response_input = gr.Textbox(label="Your Response")
|
118 |
submit_button = gr.Button("Submit")
|
119 |
+
|
120 |
+
# Maintain session state across interactions
|
121 |
+
state = gr.State({}) # Initialize state properly
|
122 |
+
|
123 |
+
# Clicking start initializes the interview and shows the first question
|
124 |
+
start_button.click(start_interview, inputs=[domain_input, company_input], outputs=[chatbot, state])
|
125 |
+
|
126 |
+
# Submitting a response updates the conversation with a follow-up question
|
127 |
+
submit_button.click(submit_response, inputs=[response_input, state], outputs=[chatbot, state]).then(
|
128 |
+
lambda _: "", inputs=[response_input], outputs=[response_input] # Clear response input after submission
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
)
|
130 |
|
131 |
+
demo.launch()
|
|