Spaces:
Running
Running
Create handler.py
Browse files- handler.py +27 -0
handler.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class EndpointHandler:
|
5 |
+
def __init__(self, path=""):
|
6 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
7 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(path)
|
8 |
+
self.model.eval()
|
9 |
+
|
10 |
+
def __call__(self, data):
|
11 |
+
inputs = data.get("inputs", "")
|
12 |
+
parameters = data.get("parameters", {})
|
13 |
+
|
14 |
+
if not inputs:
|
15 |
+
return [{"error": "Missing 'inputs' in payload"}]
|
16 |
+
|
17 |
+
input_ids = self.tokenizer.encode(inputs, return_tensors="pt")
|
18 |
+
outputs = self.model.generate(
|
19 |
+
input_ids,
|
20 |
+
max_new_tokens=parameters.get("max_new_tokens", 128),
|
21 |
+
do_sample=True,
|
22 |
+
temperature=parameters.get("temperature", 0.7),
|
23 |
+
top_p=parameters.get("top_p", 0.9),
|
24 |
+
)
|
25 |
+
|
26 |
+
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
+
return [{"generated_text": result}] # ✅ Must return a list
|