File size: 9,119 Bytes
e8552c6
 
5f41070
e8552c6
 
 
 
 
 
 
 
6550c45
 
 
 
 
e8552c6
 
 
 
 
 
6550c45
 
 
 
dba1b37
 
6550c45
 
 
 
 
 
 
 
 
 
 
 
 
 
e8552c6
 
6550c45
 
 
 
e8552c6
 
 
 
 
 
 
 
6550c45
 
 
 
 
 
e8552c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6550c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8552c6
6550c45
e8552c6
 
 
 
 
6550c45
 
 
e8552c6
 
6550c45
 
e8552c6
 
 
 
 
6550c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8552c6
 
6550c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8552c6
6550c45
 
 
 
 
 
 
 
 
 
 
 
 
 
e8552c6
6550c45
 
e8552c6
6550c45
e8552c6
 
 
 
 
 
 
 
 
6550c45
e8552c6
 
6550c45
e8552c6
6550c45
 
e8552c6
6550c45
e8552c6
6550c45
 
 
e8552c6
6550c45
e8552c6
 
6550c45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import json
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, BitsAndBytesConfig
import torch
import os

# Set up device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

hf_token = os.environ["HF_TOKEN"]


# ===============================
# Load Question Generation Model
# ===============================
model_path = "AI-Mock-Interviewer/T5" 
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)

# Move model to the appropriate device
model.to(device)

# ===============================
# Load Evaluation Model (QwQ)
# ===============================
bnb_config = BitsAndBytesConfig(
    load_in_8bit=True,
    llm_int8_enable_fp32_cpu_offload=True,
)

qwq_model_id = "unsloth/QwQ-32B-unsloth-bnb-4bit"
qwq_tokenizer = AutoTokenizer.from_pretrained(qwq_model_id, trust_remote_code=True)
qwq_model = AutoModelForCausalLM.from_pretrained(
    qwq_model_id,
    quantization_config=bnb_config,
    device_map="auto",
    trust_remote_code=True
)

# ===============================
# Prompts and Scoring
# ===============================
system_prompt = """
You are conducting a mock technical interview. The candidate's experience level can be entry-level, mid-level, or senior-level. Generate questions and follow-up questions based on the domain and the candidate's experience level. Consider these aspects:
1. The question should be relevant to the domain and appropriate for the candidate's experience level.
2. For follow-up questions, analyze the candidate's last response and ask questions that probe deeper into their understanding.
3. Avoid repeating previously asked questions or subtopics.
4. Keep questions clear and concise, targeting core technical and communication skills.
"""

subtopic_keywords = {
    "data analysis": ["data cleaning", "missing data", "EDA", "visualization"],
    "machine learning": ["supervised learning", "overfitting", "hyperparameter tuning"],
    "software engineering": ["code optimization", "design patterns", "database design"],
}

rating_scores = {"Good": 3, "Average": 2, "Needs Improvement": 1}
score_categories = [(90, "Excellent"), (75, "Very Good"), (60, "Good"), (45, "Average"), (0, "Needs Improvement")]

# ===============================
# Helper Functions
# ===============================
def identify_subtopic(question, domain):
    domain = domain.lower()
    if domain in subtopic_keywords:
        for subtopic in subtopic_keywords[domain]:
            if subtopic in question.lower():
                return subtopic
    return None

def generate_question(prompt, domain, state=None):
    full_prompt = system_prompt + "\n" + prompt
    inputs = tokenizer(full_prompt, return_tensors="pt").to(device)
    outputs = model.generate(
        inputs["input_ids"],
        max_new_tokens=50,
        no_repeat_ngram_size=2,
        top_k=30,
        top_p=0.9,
        temperature=0.7,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id,
    )
    question = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
    if not question.endswith("?"):
        question += "?"

    subtopic = identify_subtopic(question, domain)

    if state is not None:
        if (question not in state["asked_questions"] and
            (subtopic is None or subtopic not in state["asked_subtopics"])):
            state["asked_questions"].add(question)
            if subtopic:
                state["asked_subtopics"].add(subtopic)
            return question
    return question

def evaluate_response(response, question):
    eval_prompt = (
        "Evaluate the following candidate response to an interview question.\n\n"
        f"**Question:** {question}\n"
        f"**Candidate's Response:** {response}\n\n"
        "Provide a rating as: 'Good', 'Average', or 'Needs Improvement'.\n"
        "Also, provide a brief suggestion for improvement. Format:\n"
        "Rating: <Rating>\nSuggestion: <Suggestion>"
    )
    inputs = qwq_tokenizer(eval_prompt, return_tensors="pt", padding=True).to(qwq_model.device)
    outputs = qwq_model.generate(
        inputs["input_ids"],
        max_new_tokens=100,
        top_k=30,
        top_p=0.9,
        temperature=0.7,
        do_sample=True,
        pad_token_id=qwq_tokenizer.eos_token_id,
    )
    evaluation = qwq_tokenizer.decode(outputs[0], skip_special_tokens=True)
    rating, suggestion = "Unknown", "No suggestion available."
    for line in evaluation.splitlines():
        if "Rating:" in line:
            rating = line.split("Rating:")[1].strip()
        if "Suggestion:" in line:
            suggestion = line.split("Suggestion:")[1].strip()
    return rating, suggestion

def reset_state(name, domain, company, level):
    return {
        "name": name,
        "domain": domain,
        "company": company,
        "level": level,
        "asked_questions": set(),
        "asked_subtopics": set(),
        "conversation": [],
        "evaluations": [],
        "interview_active": True
    }

def start_interview(name, domain, company, level):
    state = reset_state(name, domain, company, level)
    prompt = f"Domain: {domain}. Candidate experience level: {level}. Generate the first question:"
    question = generate_question(prompt, domain, state)
    state["conversation"].append(("Interviewer", question))
    return state["conversation"], state

def submit_response(response, state):
    if not state["interview_active"]:
        return state["conversation"], state

    if not response.strip():
        state["conversation"].append(("System", "⚠️ Please answer the question before proceeding."))
        return state["conversation"], state

    if response.strip().lower() == "exit":
        return end_interview(state)

    state["conversation"].append(("Candidate", response))
    last_q = [msg for role, msg in reversed(state["conversation"]) if role == "Interviewer"][0]
    rating, suggestion = evaluate_response(response, last_q)

    state["evaluations"].append({
        "question": last_q,
        "response": response,
        "rating": rating,
        "suggestion": suggestion
    })

    state["conversation"].append(("Evaluator", f"Rating: {rating}\nSuggestion: {suggestion}"))
    prompt = f"Domain: {state['domain']}. Candidate's last response: {response}. Generate a follow-up question:"
    follow_up = generate_question(prompt, state["domain"], state)
    state["conversation"].append(("Interviewer", follow_up))
    return state["conversation"], state

def end_interview(state):
    state["interview_active"] = False
    total = sum(rating_scores.get(ev["rating"], 0) for ev in state["evaluations"])
    max_total = len(state["evaluations"]) * 3
    percent = (total / max_total * 100) if max_total > 0 else 0
    category = next(label for threshold, label in score_categories if percent >= threshold)

    summary = {
        "name": state["name"],
        "domain": state["domain"],
        "level": state["level"],
        "company": state["company"],
        "score": f"{total}/{max_total}",
        "percentage": round(percent, 2),
        "category": category,
        "evaluations": state["evaluations"]
    }

    filename = f"sessions/{state['name'].replace(' ', '_').lower()}_session.json"
    os.makedirs("sessions", exist_ok=True)
    with open(filename, "w") as f:
        json.dump(summary, f, indent=4)

    state["conversation"].append(("System", f"✅ Interview ended.\nFinal Score: {summary['score']} ({summary['category']})"))
    return state["conversation"], state

def clear_state():
    return [], None

# ===============================
# Gradio UI
# ===============================
with gr.Blocks() as demo:
    gr.Markdown("# 🧠 AI Mock Interview with Evaluation, History & Exit")

    with gr.Row():
        name_input = gr.Textbox(label="Your Name")
        domain_input = gr.Textbox(label="Domain", placeholder="e.g. Software Engineering")
        company_input = gr.Textbox(label="Company (Optional)", placeholder="e.g. Google")
        level_input = gr.Dropdown(
            label="Experience Level",
            choices=["Entry-Level", "Mid-Level", "Senior-Level"],
            value="Entry-Level"
        )

    start_button = gr.Button("Start Interview")
    chatbot = gr.Chatbot(label="Interview Conversation", height=450)

    with gr.Row():
        response_input = gr.Textbox(label="Your Response (type 'exit' to quit)", lines=2)
        submit_button = gr.Button("Submit")
        exit_button = gr.Button("Exit Interview")
        clear_button = gr.Button("Clear Session")

    state = gr.State()

    start_button.click(start_interview,
                       inputs=[name_input, domain_input, company_input, level_input],
                       outputs=[chatbot, state])
    submit_button.click(submit_response, inputs=[response_input, state], outputs=[chatbot, state]).then(lambda: "", None, response_input)
    exit_button.click(end_interview, inputs=state, outputs=[chatbot, state])
    clear_button.click(lambda: ([], None), outputs=[chatbot, state])

demo.launch()