import streamlit as st import pandas as pd import icc # Importing ICC computation functions # Set up Streamlit page layout (Full Width) st.set_page_config(layout="wide", page_title="LLM's Scores Evaluation: ICC Computation", page_icon="📊") # Title and instructions st.title("📊 LLM's Scores Evaluation: ICC Computation") st.markdown("This app supports a scientific study on peer review among Large Language Models (LLMs) (https://arxiv.org/abs/2412.09385). Before computing inter-rater agreement (ICC), responses from multiple LLMs are collected on a forecasting task, and each model is then asked to evaluate all responses using predefined criteria. This tool allows " "researchers to upload those evaluation scores, filter the data, and analyze model agreement through ICC metrics and heatmaps.") # **Two Side-by-Side Containers** container_left, container_right = st.columns([1, 2]) # Left (Filters) | Right (ICC Results + Heatmaps) # **LEFT: File Upload & Selection Filters** with container_left: st.header("📂 Upload & Selection") # File uploader uploaded_file = st.file_uploader("Upload Your CSV", type=["csv"]) st.markdown(""" **File Requirements:** - The file must be in **CSV format**. - It should contain the following columns: - **assessor**: Identifier for the assessor (e.g., evaluator name or ID). - **respondent**: Identifier for the respondent (e.g., participant name or ID). - **criterion_X**: Columns starting with "criterion" representing evaluation criteria (e.g., criterion_1, criterion_2, etc.).""") if uploaded_file is not None: df = pd.read_csv(uploaded_file, delimiter=",", dtype=str) # Read as string first required_columns = ["assessor", "respondent"] criterion_columns = [col for col in df.columns if col.startswith("criterion")] if not all(col in df.columns for col in required_columns) or len(criterion_columns) < 1: st.error("❌ Invalid CSV format.") else: st.success("✅ CSV format is valid!") # Sidebar filters st.subheader("🔍 Select Filters") # Extract Unique Options all_assessors = sorted(df["assessor"].unique()) all_respondents = sorted(df["respondent"].unique()) all_criteria = criterion_columns # **Assessors Selection with 'Select All'** select_all_assessors = st.checkbox("Select All Assessors", value=True) selected_assessors = st.multiselect( "Select Assessors", all_assessors, default=all_assessors if select_all_assessors else [] ) # **Respondents Selection with 'Select All'** select_all_respondents = st.checkbox("Select All Respondents", value=True) selected_respondents = st.multiselect( "Select Respondents", all_respondents, default=all_respondents if select_all_respondents else [] ) # **Criteria Selection with 'Select All'** select_all_criteria = st.checkbox("Select All Criteria", value=True) selected_criteria = st.multiselect( "Select Criteria", all_criteria, default=all_criteria if select_all_criteria else [] ) # Filter data based on user selection df = icc.preprocess_data(df, selected_assessors, selected_respondents, selected_criteria) if df.empty: st.error("⚠️ No data available with selected filters.") # **RIGHT: Display ICC Results + Heatmaps** with container_right: st.header("📊 ICC Results & Heatmaps") if uploaded_file is not None and not df.empty: with st.spinner("⏳ Computing ICC... Please wait."): icc_results = icc.compute_icc(df) if icc_results is not None: st.subheader("📈 Overall ICC Results") st.dataframe(icc_results, use_container_width=True) # Display ICC table else: st.warning("⚠️ Not enough respondents to compute ICC.") # **HEATMAPS: Display Below in 3 Columns** st.subheader("🔥 ICC Heatmaps (Assessor Agreement)") heatmap_cols = st.columns(3) # 3-column layout for heatmaps # Compute assessor ICC icc_matrix_types = icc.compute_assessor_icc(df) # Generate heatmaps and display heatmap_files = icc.generate_heatmaps(icc_matrix_types) for i, (icc_type, heatmap_file) in enumerate(heatmap_files.items()): heatmap_cols[i].image(heatmap_file, caption=f"ICC Heatmap ({icc_type})", use_container_width=True)