import os import pandas as pd import pingouin as pg import seaborn as sns import matplotlib.pyplot as plt # Set up output directories HEATMAPS_FOLDER = "icc_heatmaps/" os.makedirs(HEATMAPS_FOLDER, exist_ok=True) def preprocess_data(df, selected_assessors, selected_respondents, selected_criteria): """ Filters the dataset based on user-selected assessors, respondents, and criteria. Ensures data is properly formatted for ICC computation. """ df = df[df["assessor"].isin(selected_assessors) & df["respondent"].isin(selected_respondents)] df = df[["assessor", "respondent"] + selected_criteria] # Convert all columns to numeric (handling comma decimals) for col in selected_criteria: df[col] = df[col].str.replace(",", ".").astype(float) # Ensure 'assessor' and 'respondent' are treated as categorical df["assessor"] = df["assessor"].astype(str) df["respondent"] = df["respondent"].astype(str) return df def compute_icc(df): """ Computes the overall ICC (Intraclass Correlation Coefficient). """ melted_df = df.melt(id_vars=["assessor", "respondent"], var_name="Criterion", value_name="Score") if melted_df["respondent"].nunique() >= 5: icc_results = pg.intraclass_corr(data=melted_df, targets="respondent", raters="assessor", ratings="Score").round(3) return icc_results else: return None def compute_assessor_icc(df): """ Computes ICC matrices between assessors and generates heatmaps. """ melted_df = df.melt(id_vars=["assessor", "respondent"], var_name="Criterion", value_name="Score") assessors = df["assessor"].unique() icc_matrix_types = {icc_type: pd.DataFrame(index=assessors, columns=assessors, dtype=float) for icc_type in ["ICC1", "ICC2", "ICC3"]} for assessor1 in assessors: for assessor2 in assessors: if assessor1 != assessor2: subset = melted_df[melted_df["assessor"].isin([assessor1, assessor2])] if subset["respondent"].nunique() >= 5: icc_results = pg.intraclass_corr( data=subset, targets="respondent", raters="assessor", ratings="Score" ).round(3) for icc_type in ["ICC1", "ICC2", "ICC3"]: icc_matrix_types[icc_type].loc[assessor1, assessor2] = icc_results.set_index("Type").loc[icc_type]["ICC"] return icc_matrix_types def generate_heatmaps(icc_matrix_types): """ Generates and saves heatmaps for ICC matrices. """ heatmap_files = {} for icc_type, icc_matrix in icc_matrix_types.items(): plt.figure(figsize=(8, 6)) sns.heatmap(icc_matrix.astype(float), annot=True, cmap="coolwarm", linewidths=0.5, fmt=".2f") plt.title(f"Assessor ICC Matrix ({icc_type})") plt.xlabel("Assessor (LLM)") plt.ylabel("Assessor (LLM)") plt.xticks(rotation=45) plt.yticks(rotation=0) heatmap_file = os.path.join(HEATMAPS_FOLDER, f"icc_matrix_{icc_type}.png") plt.savefig(heatmap_file) plt.close() heatmap_files[icc_type] = heatmap_file return heatmap_files