Spaces:
Sleeping
Sleeping
Create icc.py
Browse files
icc.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import pingouin as pg
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
# Set up output directories
|
8 |
+
HEATMAPS_FOLDER = "icc_heatmaps/"
|
9 |
+
os.makedirs(HEATMAPS_FOLDER, exist_ok=True)
|
10 |
+
|
11 |
+
|
12 |
+
def preprocess_data(df, selected_assessors, selected_respondents, selected_criteria):
|
13 |
+
"""
|
14 |
+
Filters the dataset based on user-selected assessors, respondents, and criteria.
|
15 |
+
Ensures data is properly formatted for ICC computation.
|
16 |
+
"""
|
17 |
+
df = df[df["assessor"].isin(selected_assessors) & df["respondent"].isin(selected_respondents)]
|
18 |
+
df = df[["assessor", "respondent"] + selected_criteria]
|
19 |
+
|
20 |
+
# Convert all columns to numeric (handling comma decimals)
|
21 |
+
for col in selected_criteria:
|
22 |
+
df[col] = df[col].str.replace(",", ".").astype(float)
|
23 |
+
|
24 |
+
# Ensure 'assessor' and 'respondent' are treated as categorical
|
25 |
+
df["assessor"] = df["assessor"].astype(str)
|
26 |
+
df["respondent"] = df["respondent"].astype(str)
|
27 |
+
|
28 |
+
return df
|
29 |
+
|
30 |
+
|
31 |
+
def compute_icc(df):
|
32 |
+
"""
|
33 |
+
Computes the overall ICC (Intraclass Correlation Coefficient).
|
34 |
+
"""
|
35 |
+
melted_df = df.melt(id_vars=["assessor", "respondent"], var_name="Criterion", value_name="Score")
|
36 |
+
|
37 |
+
if melted_df["respondent"].nunique() >= 5:
|
38 |
+
icc_results = pg.intraclass_corr(data=melted_df, targets="respondent", raters="assessor", ratings="Score").round(3)
|
39 |
+
return icc_results
|
40 |
+
else:
|
41 |
+
return None
|
42 |
+
|
43 |
+
|
44 |
+
def compute_assessor_icc(df):
|
45 |
+
"""
|
46 |
+
Computes ICC matrices between assessors and generates heatmaps.
|
47 |
+
"""
|
48 |
+
melted_df = df.melt(id_vars=["assessor", "respondent"], var_name="Criterion", value_name="Score")
|
49 |
+
assessors = df["assessor"].unique()
|
50 |
+
icc_matrix_types = {icc_type: pd.DataFrame(index=assessors, columns=assessors, dtype=float) for icc_type in ["ICC1", "ICC2", "ICC3"]}
|
51 |
+
|
52 |
+
for assessor1 in assessors:
|
53 |
+
for assessor2 in assessors:
|
54 |
+
if assessor1 != assessor2:
|
55 |
+
subset = melted_df[melted_df["assessor"].isin([assessor1, assessor2])]
|
56 |
+
|
57 |
+
if subset["respondent"].nunique() >= 5:
|
58 |
+
icc_results = pg.intraclass_corr(
|
59 |
+
data=subset, targets="respondent", raters="assessor", ratings="Score"
|
60 |
+
).round(3)
|
61 |
+
|
62 |
+
for icc_type in ["ICC1", "ICC2", "ICC3"]:
|
63 |
+
icc_matrix_types[icc_type].loc[assessor1, assessor2] = icc_results.set_index("Type").loc[icc_type]["ICC"]
|
64 |
+
|
65 |
+
return icc_matrix_types
|
66 |
+
|
67 |
+
|
68 |
+
def generate_heatmaps(icc_matrix_types):
|
69 |
+
"""
|
70 |
+
Generates and saves heatmaps for ICC matrices.
|
71 |
+
"""
|
72 |
+
heatmap_files = {}
|
73 |
+
for icc_type, icc_matrix in icc_matrix_types.items():
|
74 |
+
plt.figure(figsize=(8, 6))
|
75 |
+
sns.heatmap(icc_matrix.astype(float), annot=True, cmap="coolwarm", linewidths=0.5, fmt=".2f")
|
76 |
+
plt.title(f"Assessor ICC Matrix ({icc_type})")
|
77 |
+
plt.xlabel("Assessor (LLM)")
|
78 |
+
plt.ylabel("Assessor (LLM)")
|
79 |
+
plt.xticks(rotation=45)
|
80 |
+
plt.yticks(rotation=0)
|
81 |
+
heatmap_file = os.path.join(HEATMAPS_FOLDER, f"icc_matrix_{icc_type}.png")
|
82 |
+
plt.savefig(heatmap_file)
|
83 |
+
plt.close()
|
84 |
+
heatmap_files[icc_type] = heatmap_file
|
85 |
+
|
86 |
+
return heatmap_files
|