import copy import numpy as np import torch import torch.nn.functional as F class encoder_default: def __init__(self, image_height, image_width, scale=0.25, sigma=1.5): self.image_height = image_height self.image_width = image_width self.scale = scale self.sigma = sigma def generate_heatmap(self, points): # points = (num_pts, 2) h, w = self.image_height, self.image_width pointmaps = [] for i in range(len(points)): pointmap = np.zeros([h, w], dtype=np.float32) # align_corners: False. point = copy.deepcopy(points[i]) point[0] = max(0, min(w - 1, point[0])) point[1] = max(0, min(h - 1, point[1])) pointmap = self._circle(pointmap, point, sigma=self.sigma) pointmaps.append(pointmap) pointmaps = np.stack(pointmaps, axis=0) / 255.0 pointmaps = torch.from_numpy(pointmaps).float().unsqueeze(0) pointmaps = F.interpolate(pointmaps, size=(int(w * self.scale), int(h * self.scale)), mode='bilinear', align_corners=False).squeeze() return pointmaps def _circle(self, img, pt, sigma=1.0, label_type='Gaussian'): # Check that any part of the gaussian is in-bounds tmp_size = sigma * 3 ul = [int(pt[0] - tmp_size), int(pt[1] - tmp_size)] br = [int(pt[0] + tmp_size + 1), int(pt[1] + tmp_size + 1)] if (ul[0] > img.shape[1] - 1 or ul[1] > img.shape[0] - 1 or br[0] - 1 < 0 or br[1] - 1 < 0): # If not, just return the image as is return img # Generate gaussian size = 2 * tmp_size + 1 x = np.arange(0, size, 1, np.float32) y = x[:, np.newaxis] x0 = y0 = size // 2 # The gaussian is not normalized, we want the center value to equal 1 if label_type == 'Gaussian': g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) else: g = sigma / (((x - x0) ** 2 + (y - y0) ** 2 + sigma ** 2) ** 1.5) # Usable gaussian range g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0] g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1] # Image range img_x = max(0, ul[0]), min(br[0], img.shape[1]) img_y = max(0, ul[1]), min(br[1], img.shape[0]) img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = 255 * g[g_y[0]:g_y[1], g_x[0]:g_x[1]] return img