Spaces:
Running
on
Zero
Running
on
Zero
from collections import defaultdict | |
import glob | |
import os | |
import json | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import torch | |
import decord | |
import pickle as pkl | |
def scale_intrs(intrs, ratio_x, ratio_y): | |
if len(intrs.shape) >= 3: | |
intrs[:, 0] = intrs[:, 0] * ratio_x | |
intrs[:, 1] = intrs[:, 1] * ratio_y | |
else: | |
intrs[0] = intrs[0] * ratio_x | |
intrs[1] = intrs[1] * ratio_y | |
return intrs | |
def calc_new_tgt_size(cur_hw, tgt_size, multiply): | |
ratio = tgt_size / min(cur_hw) | |
tgt_size = int(ratio * cur_hw[0]), int(ratio * cur_hw[1]) | |
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply | |
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] | |
return tgt_size, ratio_y, ratio_x | |
def calc_new_tgt_size_by_aspect(cur_hw, aspect_standard, tgt_size, multiply): | |
assert abs(cur_hw[0] / cur_hw[1] - aspect_standard) < 0.03 | |
tgt_size = tgt_size * aspect_standard, tgt_size | |
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply | |
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] | |
return tgt_size, ratio_y, ratio_x | |
def img_center_padding(img_np, pad_ratio): | |
ori_w, ori_h = img_np.shape[:2] | |
w = round((1 + pad_ratio) * ori_w) | |
h = round((1 + pad_ratio) * ori_h) | |
if len(img_np.shape) > 2: | |
img_pad_np = np.zeros((w, h, img_np.shape[2]), dtype=np.uint8) | |
else: | |
img_pad_np = np.zeros((w, h), dtype=np.uint8) | |
offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2 | |
img_pad_np[offset_h: offset_h + img_np.shape[0]:, offset_w: offset_w + img_np.shape[1]] = img_np | |
return img_pad_np | |
def resize_image_keepaspect_np(img, max_tgt_size): | |
""" | |
similar to ImageOps.contain(img_pil, (img_size, img_size)) # keep the same aspect ratio | |
""" | |
h, w = img.shape[:2] | |
ratio = max_tgt_size / max(h, w) | |
new_h, new_w = round(h * ratio), round(w * ratio) | |
return cv2.resize(img, dsize=(new_w, new_h), interpolation=cv2.INTER_AREA) | |
def center_crop_according_to_mask(img, mask, aspect_standard, enlarge_ratio): | |
""" | |
img: [H, W, 3] | |
mask: [H, W] | |
""" | |
if len(mask.shape) > 2: | |
mask = mask[:, :, 0] | |
ys, xs = np.where(mask > 0) | |
if len(xs) == 0 or len(ys) == 0: | |
raise Exception("empty mask") | |
x_min = np.min(xs) | |
x_max = np.max(xs) | |
y_min = np.min(ys) | |
y_max = np.max(ys) | |
center_x, center_y = img.shape[1]//2, img.shape[0]//2 | |
half_w = max(abs(center_x - x_min), abs(center_x - x_max)) | |
half_h = max(abs(center_y - y_min), abs(center_y - y_max)) | |
half_w_raw = half_w | |
half_h_raw = half_h | |
aspect = half_h / half_w | |
if aspect >= aspect_standard: | |
half_w = round(half_h / aspect_standard) | |
else: | |
half_h = round(half_w * aspect_standard) | |
if half_h > center_y: | |
half_w = round(half_h_raw / aspect_standard) | |
half_h = half_h_raw | |
if half_w > center_x: | |
half_h = round(half_w_raw * aspect_standard) | |
half_w = half_w_raw | |
if abs(enlarge_ratio[0] - 1) > 0.01 or abs(enlarge_ratio[1] - 1) > 0.01: | |
enlarge_ratio_min, enlarge_ratio_max = enlarge_ratio | |
enlarge_ratio_max_real = min(center_y / half_h, center_x / half_w) | |
enlarge_ratio_max = min(enlarge_ratio_max_real, enlarge_ratio_max) | |
enlarge_ratio_min = min(enlarge_ratio_max_real, enlarge_ratio_min) | |
enlarge_ratio_cur = np.random.rand() * (enlarge_ratio_max - enlarge_ratio_min) + enlarge_ratio_min | |
half_h, half_w = round(enlarge_ratio_cur * half_h), round(enlarge_ratio_cur * half_w) | |
assert half_h <= center_y | |
assert half_w <= center_x | |
assert abs(half_h / half_w - aspect_standard) < 0.03 | |
offset_x = center_x - half_w | |
offset_y = center_y - half_h | |
new_img = img[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] | |
new_mask = mask[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] | |
return new_img, new_mask, offset_x, offset_y | |
def preprocess_image(rgb_path, mask_path, intr, pad_ratio, bg_color, | |
max_tgt_size, aspect_standard, enlarge_ratio, | |
render_tgt_size, multiply, need_mask=True, | |
get_shape_param=False): | |
rgb = np.array(Image.open(rgb_path)) | |
rgb_raw = rgb.copy() | |
if pad_ratio > 0: | |
rgb = img_center_padding(rgb, pad_ratio) | |
rgb = rgb / 255.0 | |
if need_mask: | |
if rgb.shape[2] < 4: | |
if mask_path is not None: | |
# mask = np.array(Image.open(mask_path)) | |
mask = (np.array(Image.open(mask_path)) > 180) * 255 | |
else: | |
from rembg import remove | |
mask = remove(rgb_raw[:, :, (2, 1, 0)])[:, :, -1] # np require [bgr] | |
print("rmbg mask: ", mask.min(), mask.max(), mask.shape) | |
if pad_ratio > 0: | |
mask = img_center_padding(mask, pad_ratio) | |
mask = mask / 255.0 | |
else: | |
# rgb: [H, W, 4] | |
assert rgb.shape[2] == 4 | |
mask = rgb[:, :, 3] # [H, W] | |
else: | |
# just placeholder | |
mask = np.ones_like(rgb[:, :, 0]) | |
if len(mask.shape) > 2: | |
mask = mask[:, :, 0] | |
# mask = (mask > 0.5).astype(np.float32) | |
mask = mask.astype(np.float32) | |
if (rgb.shape[0] == rgb.shape[1]) and (rgb.shape[0]==512): | |
rgb = cv2.resize(rgb, (mask.shape[1], mask.shape[0]), interpolation=cv2.INTER_AREA) | |
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None]) | |
# # resize to specific size require by preprocessor of flame-estimator. | |
# rgb = resize_image_keepaspect_np(rgb, max_tgt_size) | |
# mask = resize_image_keepaspect_np(mask, max_tgt_size) | |
# crop image to enlarge human area. | |
rgb, mask, offset_x, offset_y = center_crop_according_to_mask(rgb, mask, aspect_standard, enlarge_ratio) | |
if intr is not None: | |
intr[0, 2] -= offset_x | |
intr[1, 2] -= offset_y | |
# resize to render_tgt_size for training | |
tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect(cur_hw=rgb.shape[:2], | |
aspect_standard=aspect_standard, | |
tgt_size=render_tgt_size, multiply=multiply) | |
rgb = cv2.resize(rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA) | |
mask = cv2.resize(mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA) | |
if intr is not None: | |
intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y) | |
assert abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5, f"{intr[0, 2] * 2}, {rgb.shape[1]}" | |
assert abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5, f"{intr[1, 2] * 2}, {rgb.shape[0]}" | |
intr[0, 2] = rgb.shape[1] // 2 | |
intr[1, 2] = rgb.shape[0] // 2 | |
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W] | |
mask = torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0) # [1, 1, H, W] | |
# read shape_param | |
shape_param = None | |
if get_shape_param: | |
cor_flame_path = os.path.join(os.path.dirname(os.path.dirname(rgb_path)),'canonical_flame_param.npz') | |
flame_p = np.load(cor_flame_path) | |
shape_param = torch.FloatTensor(flame_p['shape']) | |
return rgb, mask, intr, shape_param | |
def extract_imgs_from_video(video_file, save_root, fps): | |
print(f"extract_imgs_from_video:{video_file}") | |
vr = decord.VideoReader(video_file) | |
for i in range(0, len(vr), fps): | |
frame = vr[i].asnumpy() | |
save_path = os.path.join(save_root, f"{i:05d}.jpg") | |
cv2.imwrite(save_path, frame[:, :, (2, 1, 0)]) | |
def predict_motion_seqs_from_images(image_folder:str, save_root, fps=6): | |
id_name = os.path.splitext(os.path.basename(image_folder))[0] | |
if os.path.isfile(image_folder) and (image_folder.endswith("mp4") or image_folder.endswith("move")): | |
save_frame_root = os.path.join(save_root, "extracted_frames", id_name) | |
if not os.path.exists(save_frame_root): | |
os.makedirs(save_frame_root, exist_ok=True) | |
extract_imgs_from_video(video_file=image_folder, save_root=save_frame_root, fps=fps) | |
else: | |
print("skip extract_imgs_from_video......") | |
image_folder = save_frame_root | |
image_folder_abspath = os.path.abspath(image_folder) | |
print(f"predict motion seq:{image_folder_abspath}") | |
save_flame_root = image_folder + "_flame_params_mhmr" | |
if not os.path.exists(save_flame_root): | |
cmd = f"cd thirdparty/multi-hmr && python infer_batch.py --data_root {image_folder_abspath} --out_folder {image_folder_abspath} --crop_head --crop_hand --pad_ratio 0.2 --smplify" | |
os.system(cmd) | |
else: | |
print("skip predict flame.........") | |
return save_flame_root, image_folder | |
def render_flame_mesh(data, render_intrs, c2ws, human_model_path="./pretrained_models/human_model_files"): | |
from lam.models.rendering.flame_model.flame import FlameHead, FlameHeadSubdivided | |
from lam.models.rendering.utils.vis_utils import render_mesh | |
subdivide = 2 | |
flame_sub_model = FlameHeadSubdivided( | |
300, | |
100, | |
add_teeth=True, | |
add_shoulder=False, | |
flame_model_path='pretrained_models/human_model_files/flame_assets/flame/flame2023.pkl', | |
flame_lmk_embedding_path="pretrained_models/human_model_files/flame_assets/flame/landmark_embedding_with_eyes.npy", | |
flame_template_mesh_path="pretrained_models/human_model_files/flame_assets/flame/head_template_mesh.obj", | |
flame_parts_path="pretrained_models/human_model_files/flame_assets/flame/FLAME_masks.pkl", | |
subdivide_num=subdivide | |
).cuda() | |
shape = data['betas'].to('cuda') | |
flame_param = {} | |
flame_param['expr'] = data['expr'].to('cuda') | |
flame_param['rotation'] = data['rotation'].to('cuda') | |
flame_param['neck'] = data['neck_pose'].to('cuda') | |
flame_param['jaw'] = data['jaw_pose'].to('cuda') | |
flame_param['eyes'] = data['eyes_pose'].to('cuda') | |
flame_param['translation'] = data['translation'].to('cuda') | |
v_cano = flame_sub_model.get_cano_verts( | |
shape.unsqueeze(0) | |
) | |
ret = flame_sub_model.animation_forward( | |
v_cano.repeat(flame_param['expr'].shape[0], 1, 1), | |
shape.unsqueeze(0).repeat(flame_param['expr'].shape[0], 1), | |
flame_param['expr'], | |
flame_param['rotation'], | |
flame_param['neck'], | |
flame_param['jaw'], | |
flame_param['eyes'], | |
flame_param['translation'], | |
zero_centered_at_root_node=False, | |
return_landmarks=False, | |
return_verts_cano=True, | |
# static_offset=batch_data['static_offset'].to('cuda'), | |
static_offset=None, | |
) | |
flame_face = flame_sub_model.faces.cpu().squeeze().numpy() | |
mesh_render_list = [] | |
num_view = flame_param['expr'].shape[0] | |
for v_idx in range(num_view): | |
intr = render_intrs[v_idx] | |
cam_param = {"focal": torch.tensor([intr[0, 0], intr[1, 1]]), | |
"princpt": torch.tensor([intr[0, 2], intr[1, 2]])} | |
render_shape = int(cam_param['princpt'][1]* 2), int(cam_param['princpt'][0] * 2) # require h, w | |
vertices = ret["animated"][v_idx].cpu().squeeze() | |
c2w = c2ws[v_idx] | |
w2c = torch.inverse(c2w) | |
R = w2c[:3, :3] | |
T = w2c[:3, 3] | |
vertices = vertices @ R + T | |
mesh_render, is_bkg = render_mesh(vertices, | |
flame_face, cam_param, | |
np.ones((render_shape[0],render_shape[1], 3), dtype=np.float32)*255, | |
return_bg_mask=True) | |
mesh_render = mesh_render.astype(np.uint8) | |
mesh_render_list.append(mesh_render) | |
mesh_render = np.stack(mesh_render_list) | |
return mesh_render | |
def render_flame_mesh_gaga19(data, render_intrs, c2ws, human_model_path="./pretrained_models/human_model_files"): | |
subdivide = 2 | |
from lam.models.rendering.flame_model.flame import FlameHeadSubdivided | |
flame_sub_model = FlameHeadSubdivided( | |
300, | |
100, | |
add_teeth=True, | |
add_shoulder=False, | |
flame_model_path='pretrained_models/human_model_files/flame_assets/flame/flame2023.pkl', | |
flame_lmk_embedding_path="pretrained_models/human_model_files/flame_assets/flame/landmark_embedding_with_eyes.npy", | |
flame_template_mesh_path="pretrained_models/human_model_files/flame_assets/flame/head_template_mesh.obj", | |
flame_parts_path="pretrained_models/human_model_files/flame_assets/flame/FLAME_masks.pkl", | |
subdivide_num=subdivide | |
).cuda() | |
shape = data['betas'].to('cuda') | |
flame_param = {} | |
flame_param['expr'] = data['expr'].to('cuda') | |
flame_param['rotation'] = data['rotation'].to('cuda') | |
flame_param['neck'] = data['neck_pose'].to('cuda') | |
flame_param['jaw'] = data['jaw_pose'].to('cuda') | |
flame_param['eyes'] = data['eyes_pose'].to('cuda') | |
flame_param['translation'] = data['translation'].to('cuda') | |
v_cano = flame_sub_model.get_cano_verts( | |
shape.unsqueeze(0) | |
) | |
ret = flame_sub_model.animation_forward( | |
v_cano.repeat(flame_param['expr'].shape[0], 1, 1), | |
shape.unsqueeze(0).repeat(flame_param['expr'].shape[0], 1), | |
flame_param['expr'], | |
flame_param['rotation'], | |
flame_param['neck'], | |
flame_param['jaw'], | |
flame_param['eyes'], | |
flame_param['translation'], | |
zero_centered_at_root_node=False, | |
return_landmarks=False, | |
return_verts_cano=True, | |
# static_offset=batch_data['static_offset'].to('cuda'), | |
static_offset=None, | |
) | |
flame_face = flame_sub_model.faces.cpu().squeeze().numpy() | |
mesh_render_list = [] | |
num_view = flame_param['expr'].shape[0] | |
import trimesh | |
from lam.models.rendering.flame.vis_utils import RenderMesh | |
for v_idx in range(num_view): | |
mesh = trimesh.Trimesh() | |
mesh.vertices = np.array(ret["animated"][v_idx].cpu().squeeze()) | |
mesh.faces = np.array(flame_sub_model.faces.cpu().squeeze()) | |
renderer = RenderMesh(512, faces=mesh.faces, device="cuda") | |
render_img, _ = renderer(ret["animated"][[v_idx]], focal_length=12.0, transform_matrix=c2ws[[v_idx]]) | |
render_img = render_img[0].permute(1, 2, 0).detach().cpu().numpy().astype(np.uint8) | |
mesh_render_list.append(render_img) | |
mesh_render = np.stack(mesh_render_list) | |
return mesh_render | |
def _load_pose(frame_info): | |
c2w = torch.eye(4) | |
c2w = np.array(frame_info["transform_matrix"]) | |
c2w[:3, 1:3] *= -1 | |
c2w = torch.FloatTensor(c2w) | |
intrinsic = torch.eye(4) | |
intrinsic[0, 0] = frame_info["fl_x"] | |
intrinsic[1, 1] = frame_info["fl_y"] | |
intrinsic[0, 2] = frame_info["cx"] | |
intrinsic[1, 2] = frame_info["cy"] | |
intrinsic = intrinsic.float() | |
return c2w, intrinsic | |
def load_flame_params(flame_file_path, teeth_bs=None): | |
flame_param = dict(np.load(flame_file_path, allow_pickle=True)) | |
flame_param_tensor = {} | |
flame_param_tensor['expr'] = torch.FloatTensor(flame_param['expr'])[0] | |
flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['rotation'])[0] | |
flame_param_tensor['neck_pose'] = torch.FloatTensor(flame_param['neck_pose'])[0] | |
flame_param_tensor['jaw_pose'] = torch.FloatTensor(flame_param['jaw_pose'])[0] | |
flame_param_tensor['eyes_pose'] = torch.FloatTensor(flame_param['eyes_pose'])[0] | |
flame_param_tensor['translation'] = torch.FloatTensor(flame_param['translation'])[0] | |
if teeth_bs is not None: | |
flame_param_tensor['teeth_bs'] = torch.FloatTensor(teeth_bs) | |
return flame_param_tensor | |
def prepare_motion_seqs(motion_seqs_dir, image_folder, save_root, fps, | |
bg_color, aspect_standard, enlarge_ratio, | |
render_image_res, need_mask, multiply=16, | |
vis_motion=False, shape_param=None, test_sample=False, cross_id=False, src_driven=["", ""], | |
max_squen_length=None): | |
if motion_seqs_dir is None: | |
assert image_folder is not None | |
motion_seqs_dir, image_folder = predict_motion_seqs_from_images(image_folder, save_root, fps) | |
# source images | |
c2ws, intrs, bg_colors = [], [], [] | |
flame_params = [] | |
# read shape_param | |
if shape_param is None: | |
print("using driven shape params") | |
cor_flame_path = os.path.join(os.path.dirname(motion_seqs_dir),'canonical_flame_param.npz') | |
flame_p = np.load(cor_flame_path) | |
shape_param = torch.FloatTensor(flame_p['shape']) | |
transforms_json = os.path.join(os.path.dirname(motion_seqs_dir), f"transforms.json") | |
with open(transforms_json) as fp: | |
data = json.load(fp) | |
all_frames = data["frames"] | |
all_frames = sorted(all_frames, key=lambda x: x["flame_param_path"]) | |
print(f"len motion_seq:{len(all_frames)}, max motion_seq_len:{max_squen_length}") | |
if(max_squen_length is not None): | |
all_frames = all_frames[:max_squen_length] | |
frame_ids = np.array(list(range(len(all_frames)))) | |
if test_sample: | |
print("sub sample 50 frames for testing.") | |
sample_num = 50 | |
frame_ids = frame_ids[np.linspace(0, frame_ids.shape[0]-1, sample_num).astype(np.int32)] | |
print("sub sample ids:", frame_ids) | |
teeth_bs_pth = os.path.join(os.path.dirname(motion_seqs_dir), "tracked_teeth_bs.npz") | |
if os.path.exists(teeth_bs_pth): | |
teeth_bs_lst = np.load(teeth_bs_pth)['expr_teeth'] | |
else: | |
teeth_bs_lst = None | |
extra_dir_nm = "" if not cross_id else "_crossid" | |
for idx, frame_id in enumerate(frame_ids): | |
frame_info = all_frames[frame_id] | |
flame_path = os.path.join(os.path.dirname(motion_seqs_dir), frame_info["flame_param_path"]) | |
if image_folder is not None: | |
file_name = os.path.splitext(os.path.basename(flame_path))[0] | |
frame_path = os.path.join(image_folder, file_name + ".png") | |
if not os.path.exists(frame_path): | |
frame_path = os.path.join(image_folder, file_name + ".jpg") | |
teeth_bs = teeth_bs_lst[frame_id] if teeth_bs_lst is not None else None | |
flame_param = load_flame_params(flame_path, teeth_bs) | |
c2w, intrinsic = _load_pose(frame_info) | |
intrinsic = scale_intrs(intrinsic, 0.5, 0.5) | |
c2ws.append(c2w) | |
bg_colors.append(bg_color) | |
intrs.append(intrinsic) | |
flame_params.append(flame_param) | |
c2ws = torch.stack(c2ws, dim=0) # [N, 4, 4] | |
intrs = torch.stack(intrs, dim=0) # [N, 4, 4] | |
bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) # [N, 3] | |
flame_params_tmp = defaultdict(list) | |
for flame in flame_params: | |
for k, v in flame.items(): | |
flame_params_tmp[k].append(v) | |
for k, v in flame_params_tmp.items(): | |
flame_params_tmp[k] = torch.stack(v) | |
flame_params = flame_params_tmp | |
# TODO check different betas for same person | |
flame_params["betas"] = shape_param | |
if vis_motion: | |
motion_render = render_flame_mesh(flame_params, intrs, c2ws) | |
else: | |
motion_render = None | |
# add batch dim | |
for k, v in flame_params.items(): | |
flame_params[k] = v.unsqueeze(0) | |
# print(k, flame_params[k].shape, "motion_seq") | |
c2ws = c2ws.unsqueeze(0) | |
intrs = intrs.unsqueeze(0) | |
bg_colors = bg_colors.unsqueeze(0) | |
motion_seqs = {} | |
motion_seqs["render_c2ws"] = c2ws | |
motion_seqs["render_intrs"] = intrs | |
motion_seqs["render_bg_colors"] = bg_colors | |
motion_seqs["flame_params"] = flame_params | |
# motion_seqs["rgbs"] = rgbs | |
motion_seqs["vis_motion_render"] = motion_render | |
return motion_seqs | |
def prepare_gaga_motion_seqs(motion_seqs_dir, image_folder, save_root, fps, | |
bg_color, aspect_standard, enlarge_ratio, | |
render_image_res, need_mask, multiply=16, | |
vis_motion=False, shape_param=None, test_sample=False, | |
gaga_track_type="vfhq_test50_gagtrack_cano_flamescale1" | |
): | |
if motion_seqs_dir is None: | |
assert image_folder is not None | |
motion_seqs_dir, image_folder = predict_motion_seqs_from_images(image_folder, save_root, fps) | |
# motion_seqs = sorted(glob.glob(os.path.join(motion_seqs_dir, "*.npz"))) | |
# source images | |
c2ws, intrs, bg_colors = [], [], [] | |
flame_params = [] | |
# read shape_param | |
if shape_param is None: | |
print("using driven shape params") | |
cor_flame_path = os.path.join(os.path.dirname(motion_seqs_dir),'canonical_flame_param.npz') | |
flame_p = np.load(cor_flame_path) | |
shape_param = torch.FloatTensor(flame_p['shape']) | |
transforms_json = os.path.join(os.path.dirname(motion_seqs_dir), f"transforms.json") | |
with open(transforms_json) as fp: | |
data = json.load(fp) | |
uid = os.path.dirname(motion_seqs_dir).strip('/').split('/')[-1] | |
gag_optim_pth = os.path.join(f"train_data/{gaga_track_type}/", uid, "smoothed.pkl") | |
gag_flame_dict = pkl.load(open(gag_optim_pth, 'rb')) | |
all_frames = data["frames"] | |
all_frames = sorted(all_frames, key=lambda x: x["flame_param_path"]) | |
print(f"len motion_seq:{len(all_frames)}") | |
frame_ids = np.array(list(range(len(all_frames)))) | |
if test_sample: | |
print("sub sample 50 frames for testing.") | |
sample_num = 50 | |
frame_ids = frame_ids[np.linspace(0, frame_ids.shape[0]-1, sample_num).astype(np.int32)] | |
print("sub sample ids:", frame_ids) | |
def map_flame_params(flame_param): | |
""" | |
flame_param | |
├── bbox: (4,)float32 | |
├── shapecode: (300,)float32 | |
├── expcode: (100,)float32 | |
├── posecode: (6,)float32 | |
├── neckcode: (3,)float32 | |
├── eyecode: (6,)float32 | |
└── transform_matrix: (3, 4)float32 | |
""" | |
flame_param_tensor = {} | |
flame_param_tensor['expr'] = torch.FloatTensor(flame_param['expcode']) | |
# flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['transform_matrix'])[:3, :3] | |
flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['posecode'])[:3] | |
flame_param_tensor['neck_pose'] = torch.FloatTensor(flame_param.get('neckcode', np.zeros(3))) | |
flame_param_tensor['jaw_pose'] = torch.FloatTensor(flame_param['posecode'][3:]) | |
flame_param_tensor['eyes_pose'] = torch.FloatTensor(flame_param['eyecode']) | |
flame_param_tensor['translation'] = torch.FloatTensor(np.zeros(3)) | |
flame_param_tensor['shape'] = torch.FloatTensor(flame_param['shapecode']) | |
return flame_param_tensor | |
def load_pose_from_transform_mat(transform_mat): | |
c2w = torch.FloatTensor(transform_mat).clone() # w2c infact | |
# intrinsic is not used. | |
intrinsic = torch.eye(4) | |
intrinsic[0, 0] = 12 | |
intrinsic[1, 1] = 12 | |
intrinsic[0, 2] = 512 // 2 | |
intrinsic[1, 2] = 512 // 2 | |
intrinsic = intrinsic.float() | |
return c2w, intrinsic | |
for idx, frame_id in enumerate(frame_ids): | |
frame_info = all_frames[frame_id] | |
flame_path = os.path.join(os.path.dirname(motion_seqs_dir), frame_info["flame_param_path"]) | |
# copy sampled images | |
frame_id = int(flame_path.split('/')[-1].split('.')[0]) | |
flame_key = "%08d.png" % frame_id | |
# assert idx == frame_id, f"frame id {frame_id} should be the same as idx {idx}" | |
img_path = flame_path.replace("/flame_param/", "/images/").replace(flame_path.split("/")[-1], "%05d_00.png" % frame_id) | |
# img_path = flame_path.replace("/vfhq_test/", "/vfhq_test_tracking/").replace("/flame_param/", "/images/").replace(flame_path.split("/")[-1], flame_key) | |
gt_img = cv2.imread(img_path) | |
if gt_img.shape[0] != 512: | |
gt_img = cv2.resize(gt_img, (512, 512), interpolation=cv2.INTER_AREA) | |
new_img_fd = os.path.join(os.path.dirname(motion_seqs_dir), f"images_sampled50{gaga_track_type}") | |
if not os.path.exists(new_img_fd): | |
os.system(f"mkdir -p {new_img_fd}") | |
new_img_pth = os.path.join(new_img_fd, "%04d.png" % idx) | |
cv2.imwrite(new_img_pth, gt_img) | |
gag_flame_param = gag_flame_dict[flame_key] | |
flame_param = map_flame_params(gag_flame_param) | |
c2w, intrinsic = load_pose_from_transform_mat(gag_flame_param['transform_matrix']) | |
if shape_param is None: | |
shape_param = flame_param["shape"] | |
c2ws.append(c2w) | |
bg_colors.append(bg_color) | |
intrs.append(intrinsic) | |
flame_params.append(flame_param) | |
c2ws = torch.stack(c2ws, dim=0) # [N, 4, 4] | |
intrs = torch.stack(intrs, dim=0) # [N, 4, 4] | |
bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) # [N, 3] | |
flame_params_tmp = defaultdict(list) | |
for flame in flame_params: | |
for k, v in flame.items(): | |
flame_params_tmp[k].append(v) | |
for k, v in flame_params_tmp.items(): | |
flame_params_tmp[k] = torch.stack(v) | |
flame_params = flame_params_tmp | |
# TODO check different betas for same person | |
flame_params["betas"] = shape_param | |
if vis_motion: | |
motion_render = render_flame_mesh_gaga19(flame_params, None, c2ws) | |
else: | |
motion_render = None | |
# add batch dim | |
for k, v in flame_params.items(): | |
flame_params[k] = v.unsqueeze(0) | |
# print(k, flame_params[k].shape, "motion_seq") | |
c2ws = c2ws.unsqueeze(0) | |
intrs = intrs.unsqueeze(0) | |
bg_colors = bg_colors.unsqueeze(0) | |
motion_seqs = {} | |
motion_seqs["render_c2ws"] = c2ws | |
motion_seqs["render_intrs"] = intrs | |
motion_seqs["render_bg_colors"] = bg_colors | |
motion_seqs["flame_params"] = flame_params | |
motion_seqs["vis_motion_render"] = motion_render | |
return motion_seqs | |