Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch.autograd import Variable | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
def get_channel_sum(input): | |
""" | |
Generates the sum of each channel of the input | |
input = batch_size x 68 x 64 x 64 | |
output = batch_size x 68 | |
""" | |
temp = torch.sum(input, dim=3) | |
output = torch.sum(temp, dim=2) | |
return output | |
def expand_two_dimensions_at_end(input, dim1, dim2): | |
""" | |
Adds two more dimensions to the end of the input | |
input = batch_size x 68 | |
output= batch_size x 68 x dim1 x dim2 | |
""" | |
input = input.unsqueeze(-1).unsqueeze(-1) | |
input = input.expand(-1, -1, dim1, dim2) | |
return input | |
class Distribution(object): | |
def __init__(self, heatmaps, num_dim_dist=2, EPSILON=1e-5, is_normalize=True): | |
self.heatmaps = heatmaps | |
self.num_dim_dist = num_dim_dist | |
self.EPSILON = EPSILON | |
self.is_normalize = is_normalize | |
batch, npoints, h, w = heatmaps.shape | |
# normalize | |
heatmap_sum = torch.clamp(heatmaps.sum([2, 3]), min=1e-6) | |
self.heatmaps = heatmaps / heatmap_sum.view(batch, npoints, 1, 1) | |
# means [batch_size x 68 x 2] | |
self.mean = self.get_spatial_mean(self.heatmaps) | |
# covars [batch_size x 68 x 2 x 2] | |
self.covars = self.get_covariance_matrix(self.heatmaps, self.mean) | |
_covars = self.covars.view(batch * npoints, 2, 2).cpu() | |
evalues, evectors = _covars.symeig(eigenvectors=True) | |
# eigenvalues [batch_size x 68 x 2] | |
self.evalues = evalues.view(batch, npoints, 2).to(heatmaps) | |
# eignvectors [batch_size x 68 x 2 x 2] | |
self.evectors = evectors.view(batch, npoints, 2, 2).to(heatmaps) | |
def __repr__(self): | |
return "Distribution()" | |
def plot(self, heatmap, mean, evalues, evectors): | |
# heatmap is not normalized | |
plt.figure(0) | |
if heatmap.is_cuda: | |
heatmap, mean = heatmap.cpu(), mean.cpu() | |
evalues, evectors = evalues.cpu(), evectors.cpu() | |
sns.heatmap(heatmap, cmap="RdBu_r") | |
for evalue, evector in zip(evalues, evectors): | |
plt.arrow(mean[0], mean[1], evalue * evector[0], evalue * evector[1], | |
width=0.2, shape="full") | |
plt.show() | |
def easy_plot(self, index): | |
# index = (num of batch_size, num of num_points) | |
num_bs, num_p = index | |
heatmap = self.heatmaps[num_bs, num_p] | |
mean = self.mean[num_bs, num_p] | |
evalues = self.evalues[num_bs, num_p] | |
evectors = self.evectors[num_bs, num_p] | |
self.plot(heatmap, mean, evalues, evectors) | |
def project_and_scale(self, pts, eigenvalues, eigenvectors): | |
batch_size, npoints, _ = pts.shape | |
proj_pts = torch.matmul(pts.view(batch_size, npoints, 1, 2), eigenvectors) | |
scale_proj_pts = proj_pts.view(batch_size, npoints, 2) / torch.sqrt(eigenvalues) | |
return scale_proj_pts | |
def _make_grid(self, h, w): | |
if self.is_normalize: | |
yy, xx = torch.meshgrid( | |
torch.arange(h).float() / (h - 1) * 2 - 1, | |
torch.arange(w).float() / (w - 1) * 2 - 1) | |
else: | |
yy, xx = torch.meshgrid( | |
torch.arange(h).float(), | |
torch.arange(w).float() | |
) | |
return yy, xx | |
def get_spatial_mean(self, heatmap): | |
batch, npoints, h, w = heatmap.shape | |
yy, xx = self._make_grid(h, w) | |
yy = yy.view(1, 1, h, w).to(heatmap) | |
xx = xx.view(1, 1, h, w).to(heatmap) | |
yy_coord = (yy * heatmap).sum([2, 3]) # batch x npoints | |
xx_coord = (xx * heatmap).sum([2, 3]) # batch x npoints | |
coords = torch.stack([xx_coord, yy_coord], dim=-1) | |
return coords | |
def get_covariance_matrix(self, htp, means): | |
""" | |
Covariance calculation from the normalized heatmaps | |
Reference https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_covariance | |
The unbiased estimate is given by | |
Unbiased covariance = | |
___ | |
\ | |
/__ w_i (x_i - \mu_i)^T (x_i - \mu_i) | |
___________________________________________ | |
V_1 - (V_2/V_1) | |
___ ___ | |
\ \ | |
where V_1 = /__ w_i and V_2 = /__ w_i^2 | |
Input: | |
htp = batch_size x 68 x 64 x 64 | |
means = batch_size x 68 x 2 | |
Output: | |
covariance = batch_size x 68 x 2 x 2 | |
""" | |
batch_size = htp.shape[0] | |
num_points = htp.shape[1] | |
height = htp.shape[2] | |
width = htp.shape[3] | |
yv, xv = self._make_grid(height, width) | |
xv = Variable(xv) | |
yv = Variable(yv) | |
if htp.is_cuda: | |
xv = xv.cuda() | |
yv = yv.cuda() | |
xmean = means[:, :, 0] | |
xv_minus_mean = xv.expand(batch_size, num_points, -1, -1) - expand_two_dimensions_at_end(xmean, height, | |
width) # batch_size x 68 x 64 x 64 | |
ymean = means[:, :, 1] | |
yv_minus_mean = yv.expand(batch_size, num_points, -1, -1) - expand_two_dimensions_at_end(ymean, height, | |
width) # batch_size x 68 x 64 x 64 | |
# These are the unweighted versions | |
wt_xv_minus_mean = xv_minus_mean | |
wt_yv_minus_mean = yv_minus_mean | |
wt_xv_minus_mean = wt_xv_minus_mean.view(batch_size * num_points, height * width) # batch_size*68 x 4096 | |
wt_xv_minus_mean = wt_xv_minus_mean.view(batch_size * num_points, 1, | |
height * width) # batch_size*68 x 1 x 4096 | |
wt_yv_minus_mean = wt_yv_minus_mean.view(batch_size * num_points, height * width) # batch_size*68 x 4096 | |
wt_yv_minus_mean = wt_yv_minus_mean.view(batch_size * num_points, 1, | |
height * width) # batch_size*68 x 1 x 4096 | |
vec_concat = torch.cat((wt_xv_minus_mean, wt_yv_minus_mean), 1) # batch_size*68 x 2 x 4096 | |
htp_vec = htp.view(batch_size * num_points, 1, height * width) | |
htp_vec = htp_vec.expand(-1, 2, -1) | |
# Torch batch matrix multiplication | |
# https://pytorch.org/docs/stable/torch.html#torch.bmm | |
# Also use the heatmap as the weights at one place now | |
covariance = torch.bmm(htp_vec * vec_concat, vec_concat.transpose(1, 2)) # batch_size*68 x 2 x 2 | |
covariance = covariance.view(batch_size, num_points, self.num_dim_dist, | |
self.num_dim_dist) # batch_size x 68 x 2 x 2 | |
V_1 = get_channel_sum(htp) + self.EPSILON # batch_size x 68 | |
V_2 = get_channel_sum(torch.pow(htp, 2)) # batch_size x 68 | |
denominator = V_1 - (V_2 / V_1) | |
covariance = covariance / expand_two_dimensions_at_end(denominator, self.num_dim_dist, self.num_dim_dist) | |
return (covariance) | |