Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
from .smoothL1Loss import SmoothL1Loss | |
from .wingLoss import WingLoss | |
def get_channel_sum(input): | |
temp = torch.sum(input, dim=3) | |
output = torch.sum(temp, dim=2) | |
return output | |
def expand_two_dimensions_at_end(input, dim1, dim2): | |
input = input.unsqueeze(-1).unsqueeze(-1) | |
input = input.expand(-1, -1, dim1, dim2) | |
return input | |
class STARLoss_v2(nn.Module): | |
def __init__(self, w=1, dist='smoothl1', num_dim_image=2, EPSILON=1e-5): | |
super(STARLoss_v2, self).__init__() | |
self.w = w | |
self.num_dim_image = num_dim_image | |
self.EPSILON = EPSILON | |
self.dist = dist | |
if self.dist == 'smoothl1': | |
self.dist_func = SmoothL1Loss() | |
elif self.dist == 'l1': | |
self.dist_func = F.l1_loss | |
elif self.dist == 'l2': | |
self.dist_func = F.mse_loss | |
elif self.dist == 'wing': | |
self.dist_func = WingLoss() | |
else: | |
raise NotImplementedError | |
def __repr__(self): | |
return "STARLoss()" | |
def _make_grid(self, h, w): | |
yy, xx = torch.meshgrid( | |
torch.arange(h).float() / (h - 1) * 2 - 1, | |
torch.arange(w).float() / (w - 1) * 2 - 1) | |
return yy, xx | |
def weighted_mean(self, heatmap): | |
batch, npoints, h, w = heatmap.shape | |
yy, xx = self._make_grid(h, w) | |
yy = yy.view(1, 1, h, w).to(heatmap) | |
xx = xx.view(1, 1, h, w).to(heatmap) | |
yy_coord = (yy * heatmap).sum([2, 3]) # batch x npoints | |
xx_coord = (xx * heatmap).sum([2, 3]) # batch x npoints | |
coords = torch.stack([xx_coord, yy_coord], dim=-1) | |
return coords | |
def unbiased_weighted_covariance(self, htp, means, num_dim_image=2, EPSILON=1e-5): | |
batch_size, num_points, height, width = htp.shape | |
yv, xv = self._make_grid(height, width) | |
xv = Variable(xv) | |
yv = Variable(yv) | |
if htp.is_cuda: | |
xv = xv.cuda() | |
yv = yv.cuda() | |
xmean = means[:, :, 0] | |
xv_minus_mean = xv.expand(batch_size, num_points, -1, -1) - expand_two_dimensions_at_end(xmean, height, | |
width) # [batch_size, 68, 64, 64] | |
ymean = means[:, :, 1] | |
yv_minus_mean = yv.expand(batch_size, num_points, -1, -1) - expand_two_dimensions_at_end(ymean, height, | |
width) # [batch_size, 68, 64, 64] | |
wt_xv_minus_mean = xv_minus_mean | |
wt_yv_minus_mean = yv_minus_mean | |
wt_xv_minus_mean = wt_xv_minus_mean.view(batch_size * num_points, height * width) # [batch_size*68, 4096] | |
wt_xv_minus_mean = wt_xv_minus_mean.view(batch_size * num_points, 1, height * width) # [batch_size*68, 1, 4096] | |
wt_yv_minus_mean = wt_yv_minus_mean.view(batch_size * num_points, height * width) # [batch_size*68, 4096] | |
wt_yv_minus_mean = wt_yv_minus_mean.view(batch_size * num_points, 1, height * width) # [batch_size*68, 1, 4096] | |
vec_concat = torch.cat((wt_xv_minus_mean, wt_yv_minus_mean), 1) # [batch_size*68, 2, 4096] | |
htp_vec = htp.view(batch_size * num_points, 1, height * width) | |
htp_vec = htp_vec.expand(-1, 2, -1) | |
covariance = torch.bmm(htp_vec * vec_concat, vec_concat.transpose(1, 2)) # [batch_size*68, 2, 2] | |
covariance = covariance.view(batch_size, num_points, num_dim_image, num_dim_image) # [batch_size, 68, 2, 2] | |
V_1 = htp.sum([2, 3]) + EPSILON # [batch_size, 68] | |
V_2 = torch.pow(htp, 2).sum([2, 3]) + EPSILON # [batch_size, 68] | |
denominator = V_1 - (V_2 / V_1) | |
covariance = covariance / expand_two_dimensions_at_end(denominator, num_dim_image, num_dim_image) | |
return covariance | |
def ambiguity_guided_decompose(self, error, evalues, evectors): | |
bs, npoints = error.shape[:2] | |
normal_vector = evectors[:, :, 0] | |
tangent_vector = evectors[:, :, 1] | |
normal_error = torch.matmul(normal_vector.unsqueeze(-2), error.unsqueeze(-1)) | |
tangent_error = torch.matmul(tangent_vector.unsqueeze(-2), error.unsqueeze(-1)) | |
normal_error = normal_error.squeeze(dim=-1) | |
tangent_error = tangent_error.squeeze(dim=-1) | |
normal_dist = self.dist_func(normal_error, torch.zeros_like(normal_error).to(normal_error), reduction='none') | |
tangent_dist = self.dist_func(tangent_error, torch.zeros_like(tangent_error).to(tangent_error), reduction='none') | |
normal_dist = normal_dist.reshape(bs, npoints, 1) | |
tangent_dist = tangent_dist.reshape(bs, npoints, 1) | |
dist = torch.cat((normal_dist, tangent_dist), dim=-1) | |
scale_dist = dist / torch.sqrt(evalues + self.EPSILON) | |
scale_dist = scale_dist.sum(-1) | |
return scale_dist | |
def eigenvalue_restriction(self, evalues, batch, npoints): | |
eigen_loss = torch.abs(evalues.view(batch, npoints, 2)).sum(-1) | |
return eigen_loss | |
def forward(self, heatmap, groundtruth): | |
""" | |
heatmap: b x n x 64 x 64 | |
groundtruth: b x n x 2 | |
output: b x n x 1 => 1 | |
""" | |
# normalize | |
bs, npoints, h, w = heatmap.shape | |
heatmap_sum = torch.clamp(heatmap.sum([2, 3]), min=1e-6) | |
heatmap = heatmap / heatmap_sum.view(bs, npoints, 1, 1) | |
means = self.weighted_mean(heatmap) # [bs, 68, 2] | |
covars = self.unbiased_weighted_covariance(heatmap, means) # covars [bs, 68, 2, 2] | |
# TODO: GPU-based eigen-decomposition | |
# https://github.com/pytorch/pytorch/issues/60537 | |
_covars = covars.view(bs * npoints, 2, 2).cpu() | |
evalues, evectors = _covars.symeig(eigenvectors=True) # evalues [bs * 68, 2], evectors [bs * 68, 2, 2] | |
evalues = evalues.view(bs, npoints, 2).to(heatmap) | |
evectors = evectors.view(bs, npoints, 2, 2).to(heatmap) | |
# STAR Loss | |
# Ambiguity-guided Decomposition | |
loss_trans = self.ambiguity_guided_decompose(groundtruth - means, evalues, evectors) | |
# Eigenvalue Restriction | |
loss_eigen = self.eigenvalue_restriction(evalues, bs, npoints) | |
star_loss = loss_trans + self.w * loss_eigen | |
return star_loss.mean() | |