Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class AWingLoss(nn.Module): | |
def __init__(self, omega=14, theta=0.5, epsilon=1, alpha=2.1, use_weight_map=True): | |
super(AWingLoss, self).__init__() | |
self.omega = omega | |
self.theta = theta | |
self.epsilon = epsilon | |
self.alpha = alpha | |
self.use_weight_map = use_weight_map | |
def __repr__(self): | |
return "AWingLoss()" | |
def generate_weight_map(self, heatmap, k_size=3, w=10): | |
dilate = F.max_pool2d(heatmap, kernel_size=k_size, stride=1, padding=1) | |
weight_map = torch.where(dilate < 0.2, torch.zeros_like(heatmap), torch.ones_like(heatmap)) | |
return w * weight_map + 1 | |
def forward(self, output, groundtruth): | |
""" | |
input: b x n x h x w | |
output: b x n x h x w => 1 | |
""" | |
delta = (output - groundtruth).abs() | |
A = self.omega * (1 / (1 + torch.pow(self.theta / self.epsilon, self.alpha - groundtruth))) * (self.alpha - groundtruth) * \ | |
(torch.pow(self.theta / self.epsilon, self.alpha - groundtruth - 1)) * (1 / self.epsilon) | |
C = self.theta * A - self.omega * \ | |
torch.log(1 + torch.pow(self.theta / self.epsilon, self.alpha - groundtruth)) | |
loss = torch.where(delta < self.theta, | |
self.omega * torch.log(1 + torch.pow(delta / self.epsilon, self.alpha - groundtruth)), | |
(A * delta - C)) | |
if self.use_weight_map: | |
weight = self.generate_weight_map(groundtruth) | |
loss = loss * weight | |
return loss.mean() | |