Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
import math | |
import random | |
import numpy as np | |
from skimage import transform | |
class Augmentation: | |
def __init__(self, | |
is_train=True, | |
aug_prob=1.0, | |
image_size=256, | |
crop_op=True, | |
std_lmk_5pts=None, | |
target_face_scale=1.0, | |
flip_rate=0.5, | |
flip_mapping=None, | |
random_shift_sigma=0.05, | |
random_rot_sigma=math.pi/180*18, | |
random_scale_sigma=0.1, | |
random_gray_rate=0.2, | |
random_occ_rate=0.4, | |
random_blur_rate=0.3, | |
random_gamma_rate=0.2, | |
random_nose_fusion_rate=0.2): | |
self.is_train = is_train | |
self.aug_prob = aug_prob | |
self.crop_op = crop_op | |
self._flip = Flip(flip_mapping, flip_rate) | |
if self.crop_op: | |
self._cropMatrix = GetCropMatrix( | |
image_size=image_size, | |
target_face_scale=target_face_scale, | |
align_corners=True) | |
else: | |
self._alignMatrix = GetAlignMatrix( | |
image_size=image_size, | |
target_face_scale=target_face_scale, | |
std_lmk_5pts=std_lmk_5pts) | |
self._randomGeometryMatrix = GetRandomGeometryMatrix( | |
target_shape=(image_size, image_size), | |
from_shape=(image_size, image_size), | |
shift_sigma=random_shift_sigma, | |
rot_sigma=random_rot_sigma, | |
scale_sigma=random_scale_sigma, | |
align_corners=True) | |
self._transform = Transform(image_size=image_size) | |
self._randomTexture = RandomTexture( | |
random_gray_rate=random_gray_rate, | |
random_occ_rate=random_occ_rate, | |
random_blur_rate=random_blur_rate, | |
random_gamma_rate=random_gamma_rate, | |
random_nose_fusion_rate=random_nose_fusion_rate) | |
def process(self, img, lmk, lmk_5pts=None, scale=1.0, center_w=0, center_h=0, is_train=True): | |
if self.is_train and random.random() < self.aug_prob: | |
img, lmk, lmk_5pts, center_w, center_h = self._flip.process(img, lmk, lmk_5pts, center_w, center_h) | |
matrix_geoaug = self._randomGeometryMatrix.process() | |
if self.crop_op: | |
matrix_pre = self._cropMatrix.process(scale, center_w, center_h) | |
else: | |
matrix_pre = self._alignMatrix.process(lmk_5pts) | |
matrix = matrix_geoaug @ matrix_pre | |
aug_img, aug_lmk = self._transform.process(img, lmk, matrix) | |
aug_img = self._randomTexture.process(aug_img) | |
else: | |
if self.crop_op: | |
matrix = self._cropMatrix.process(scale, center_w, center_h) | |
else: | |
matrix = self._alignMatrix.process(lmk_5pts) | |
aug_img, aug_lmk = self._transform.process(img, lmk, matrix) | |
return aug_img, aug_lmk, matrix | |
class GetCropMatrix: | |
def __init__(self, image_size, target_face_scale, align_corners=False): | |
self.image_size = image_size | |
self.target_face_scale = target_face_scale | |
self.align_corners = align_corners | |
def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center): | |
cosv = math.cos(angle) | |
sinv = math.sin(angle) | |
fx, fy = from_center | |
tx, ty = to_center | |
acos = scale * cosv | |
asin = scale * sinv | |
a0 = acos | |
a1 = -asin | |
a2 = tx - acos * fx + asin * fy + shift_xy[0] | |
b0 = asin | |
b1 = acos | |
b2 = ty - asin * fx - acos * fy + shift_xy[1] | |
rot_scale_m = np.array([ | |
[a0, a1, a2], | |
[b0, b1, b2], | |
[0.0, 0.0, 1.0] | |
], np.float32) | |
return rot_scale_m | |
def process(self, scale, center_w, center_h): | |
if self.align_corners: | |
to_w, to_h = self.image_size-1, self.image_size-1 | |
else: | |
to_w, to_h = self.image_size, self.image_size | |
rot_mu = 0 | |
scale_mu = self.image_size / (scale * self.target_face_scale * 200.0) | |
shift_xy_mu = (0, 0) | |
matrix = self._compose_rotate_and_scale( | |
rot_mu, scale_mu, shift_xy_mu, | |
from_center=[center_w, center_h], | |
to_center=[to_w/2.0, to_h/2.0]) | |
return matrix | |
class GetAlignMatrix: | |
def __init__(self, image_size, target_face_scale, std_lmk_5pts): | |
""" | |
points in std_lmk_5pts range from -1 to 1. | |
""" | |
self.std_lmk_5pts = (std_lmk_5pts * target_face_scale + 1) * \ | |
np.array([image_size, image_size], np.float32) / 2.0 | |
def process(self, lmk_5pts): | |
assert lmk_5pts.shape[-2:] == (5, 2) | |
tform = transform.SimilarityTransform() | |
tform.estimate(lmk_5pts, self.std_lmk_5pts) | |
return tform.params | |
class GetRandomGeometryMatrix: | |
def __init__(self, target_shape, from_shape, | |
shift_sigma=0.1, rot_sigma=18*math.pi/180, scale_sigma=0.1, | |
shift_mu=0.0, rot_mu=0.0, scale_mu=1.0, | |
shift_normal=True, rot_normal=True, scale_normal=True, | |
align_corners=False): | |
self.target_shape = target_shape | |
self.from_shape = from_shape | |
self.shift_config = (shift_mu, shift_sigma, shift_normal) | |
self.rot_config = (rot_mu, rot_sigma, rot_normal) | |
self.scale_config = (scale_mu, scale_sigma, scale_normal) | |
self.align_corners = align_corners | |
def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center): | |
cosv = math.cos(angle) | |
sinv = math.sin(angle) | |
fx, fy = from_center | |
tx, ty = to_center | |
acos = scale * cosv | |
asin = scale * sinv | |
a0 = acos | |
a1 = -asin | |
a2 = tx - acos * fx + asin * fy + shift_xy[0] | |
b0 = asin | |
b1 = acos | |
b2 = ty - asin * fx - acos * fy + shift_xy[1] | |
rot_scale_m = np.array([ | |
[a0, a1, a2], | |
[b0, b1, b2], | |
[0.0, 0.0, 1.0] | |
], np.float32) | |
return rot_scale_m | |
def _random(self, mu_sigma_normal, size=None): | |
mu, sigma, is_normal = mu_sigma_normal | |
if is_normal: | |
return np.random.normal(mu, sigma, size=size) | |
else: | |
return np.random.uniform(low=mu-sigma, high=mu+sigma, size=size) | |
def process(self): | |
if self.align_corners: | |
from_w, from_h = self.from_shape[1]-1, self.from_shape[0]-1 | |
to_w, to_h = self.target_shape[1]-1, self.target_shape[0]-1 | |
else: | |
from_w, from_h = self.from_shape[1], self.from_shape[0] | |
to_w, to_h = self.target_shape[1], self.target_shape[0] | |
if self.shift_config[:2] != (0.0, 0.0) or \ | |
self.rot_config[:2] != (0.0, 0.0) or \ | |
self.scale_config[:2] != (1.0, 0.0): | |
shift_xy = self._random(self.shift_config, size=[2]) * \ | |
min(to_h, to_w) | |
rot_angle = self._random(self.rot_config) | |
scale = self._random(self.scale_config) | |
matrix_geoaug = self._compose_rotate_and_scale( | |
rot_angle, scale, shift_xy, | |
from_center=[from_w/2.0, from_h/2.0], | |
to_center=[to_w/2.0, to_h/2.0]) | |
return matrix_geoaug | |
class Transform: | |
def __init__(self, image_size): | |
self.image_size = image_size | |
def _transformPoints2D(self, points, matrix): | |
""" | |
points (nx2), matrix (3x3) -> points (nx2) | |
""" | |
dtype = points.dtype | |
# nx3 | |
points = np.concatenate([points, np.ones_like(points[:, [0]])], axis=1) | |
points = points @ np.transpose(matrix) | |
points = points[:, :2] / points[:, [2, 2]] | |
return points.astype(dtype) | |
def _transformPerspective(self, image, matrix): | |
""" | |
image, matrix3x3 -> transformed_image | |
""" | |
return cv2.warpPerspective( | |
image, matrix, | |
dsize=(self.image_size, self.image_size), | |
flags=cv2.INTER_LINEAR, borderValue=0) | |
def process(self, image, landmarks, matrix): | |
t_landmarks = self._transformPoints2D(landmarks, matrix) | |
t_image = self._transformPerspective(image, matrix) | |
return t_image, t_landmarks | |
class RandomTexture: | |
def __init__(self, random_gray_rate=0, random_occ_rate=0, random_blur_rate=0, random_gamma_rate=0, random_nose_fusion_rate=0): | |
self.random_gray_rate = random_gray_rate | |
self.random_occ_rate = random_occ_rate | |
self.random_blur_rate = random_blur_rate | |
self.random_gamma_rate = random_gamma_rate | |
self.random_nose_fusion_rate = random_nose_fusion_rate | |
self.texture_augs = ( | |
(self.add_occ, self.random_occ_rate), | |
(self.add_blur, self.random_blur_rate), | |
(self.add_gamma, self.random_gamma_rate), | |
(self.add_nose_fusion, self.random_nose_fusion_rate) | |
) | |
def add_gray(self, image): | |
assert image.ndim == 3 and image.shape[-1] == 3 | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
image = np.tile(np.expand_dims(image, -1), [1, 1, 3]) | |
return image | |
def add_occ(self, image): | |
h, w, c = image.shape | |
rh = 0.2 + 0.6 * random.random() # [0.2, 0.8] | |
rw = rh - 0.2 + 0.4 * random.random() | |
cx = int((h - 1) * random.random()) | |
cy = int((w - 1) * random.random()) | |
dh = int(h / 2 * rh) | |
dw = int(w / 2 * rw) | |
x0 = max(0, cx - dw // 2) | |
y0 = max(0, cy - dh // 2) | |
x1 = min(w - 1, cx + dw // 2) | |
y1 = min(h - 1, cy + dh // 2) | |
image[y0:y1+1, x0:x1+1] = 0 | |
return image | |
def add_blur(self, image): | |
blur_kratio = 0.05 * random.random() | |
blur_ksize = int((image.shape[0] + image.shape[1]) / 2 * blur_kratio) | |
if blur_ksize > 1: | |
image = cv2.blur(image, (blur_ksize, blur_ksize)) | |
return image | |
def add_gamma(self, image): | |
if random.random() < 0.5: | |
gamma = 0.25 + 0.75 * random.random() | |
else: | |
gamma = 1.0 + 3.0 * random.random() | |
image = (((image / 255.0) ** gamma) * 255).astype("uint8") | |
return image | |
def add_nose_fusion(self, image): | |
h, w, c = image.shape | |
nose = np.array(bytearray(os.urandom(h * w * c)), dtype=image.dtype).reshape(h, w, c) | |
alpha = 0.5 * random.random() | |
image = (1 - alpha) * image + alpha * nose | |
return image.astype(np.uint8) | |
def process(self, image): | |
image = image.copy() | |
if random.random() < self.random_occ_rate: | |
image = self.add_occ(image) | |
if random.random() < self.random_blur_rate: | |
image = self.add_blur(image) | |
if random.random() < self.random_gamma_rate: | |
image = self.add_gamma(image) | |
if random.random() < self.random_nose_fusion_rate: | |
image = self.add_nose_fusion(image) | |
""" | |
orders = list(range(len(self.texture_augs))) | |
random.shuffle(orders) | |
for order in orders: | |
if random.random() < self.texture_augs[order][1]: | |
image = self.texture_augs[order][0](image) | |
""" | |
if random.random() < self.random_gray_rate: | |
image = self.add_gray(image) | |
return image | |
class Flip: | |
def __init__(self, flip_mapping, random_rate): | |
self.flip_mapping = flip_mapping | |
self.random_rate = random_rate | |
def process(self, image, landmarks, landmarks_5pts, center_w, center_h): | |
if random.random() >= self.random_rate or self.flip_mapping is None: | |
return image, landmarks, landmarks_5pts, center_w, center_h | |
# COFW | |
if landmarks.shape[0] == 29: | |
flip_offset = 0 | |
# 300W, WFLW | |
elif landmarks.shape[0] in (68, 98): | |
flip_offset = -1 | |
else: | |
flip_offset = -1 | |
h, w, _ = image.shape | |
#image_flip = cv2.flip(image, 1) | |
image_flip = np.fliplr(image).copy() | |
landmarks_flip = landmarks.copy() | |
for i, j in self.flip_mapping: | |
landmarks_flip[i] = landmarks[j] | |
landmarks_flip[j] = landmarks[i] | |
landmarks_flip[:, 0] = w + flip_offset - landmarks_flip[:, 0] | |
if landmarks_5pts is not None: | |
flip_mapping = ([0, 1], [3, 4]) | |
landmarks_5pts_flip = landmarks_5pts.copy() | |
for i, j in flip_mapping: | |
landmarks_5pts_flip[i] = landmarks_5pts[j] | |
landmarks_5pts_flip[j] = landmarks_5pts[i] | |
landmarks_5pts_flip[:, 0] = w + flip_offset - landmarks_5pts_flip[:, 0] | |
else: | |
landmarks_5pts_flip = None | |
center_w = w + flip_offset - center_w | |
return image_flip, landmarks_flip, landmarks_5pts_flip, center_w, center_h | |