Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import math | |
import copy | |
import numpy as np | |
import argparse | |
import torch | |
import json | |
# private package | |
from lib import utility | |
from FaceBoxesV2.faceboxes_detector import * | |
class GetCropMatrix(): | |
""" | |
from_shape -> transform_matrix | |
""" | |
def __init__(self, image_size, target_face_scale, align_corners=False): | |
self.image_size = image_size | |
self.target_face_scale = target_face_scale | |
self.align_corners = align_corners | |
def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center): | |
cosv = math.cos(angle) | |
sinv = math.sin(angle) | |
fx, fy = from_center | |
tx, ty = to_center | |
acos = scale * cosv | |
asin = scale * sinv | |
a0 = acos | |
a1 = -asin | |
a2 = tx - acos * fx + asin * fy + shift_xy[0] | |
b0 = asin | |
b1 = acos | |
b2 = ty - asin * fx - acos * fy + shift_xy[1] | |
rot_scale_m = np.array([ | |
[a0, a1, a2], | |
[b0, b1, b2], | |
[0.0, 0.0, 1.0] | |
], np.float32) | |
return rot_scale_m | |
def process(self, scale, center_w, center_h): | |
if self.align_corners: | |
to_w, to_h = self.image_size - 1, self.image_size - 1 | |
else: | |
to_w, to_h = self.image_size, self.image_size | |
rot_mu = 0 | |
scale_mu = self.image_size / (scale * self.target_face_scale * 200.0) | |
shift_xy_mu = (0, 0) | |
matrix = self._compose_rotate_and_scale( | |
rot_mu, scale_mu, shift_xy_mu, | |
from_center=[center_w, center_h], | |
to_center=[to_w / 2.0, to_h / 2.0]) | |
return matrix | |
class TransformPerspective(): | |
""" | |
image, matrix3x3 -> transformed_image | |
""" | |
def __init__(self, image_size): | |
self.image_size = image_size | |
def process(self, image, matrix): | |
return cv2.warpPerspective( | |
image, matrix, dsize=(self.image_size, self.image_size), | |
flags=cv2.INTER_LINEAR, borderValue=0) | |
class TransformPoints2D(): | |
""" | |
points (nx2), matrix (3x3) -> points (nx2) | |
""" | |
def process(self, srcPoints, matrix): | |
# nx3 | |
desPoints = np.concatenate([srcPoints, np.ones_like(srcPoints[:, [0]])], axis=1) | |
desPoints = desPoints @ np.transpose(matrix) # nx3 | |
desPoints = desPoints[:, :2] / desPoints[:, [2, 2]] | |
return desPoints.astype(srcPoints.dtype) | |
class Alignment: | |
def __init__(self, args, model_path, dl_framework, device_ids): | |
self.input_size = 256 | |
self.target_face_scale = 1.0 | |
self.dl_framework = dl_framework | |
# model | |
if self.dl_framework == "pytorch": | |
# conf | |
self.config = utility.get_config(args) | |
self.config.device_id = device_ids[0] | |
# set environment | |
utility.set_environment(self.config) | |
# self.config.init_instance() | |
# if self.config.logger is not None: | |
# self.config.logger.info("Loaded configure file %s: %s" % (args.config_name, self.config.id)) | |
# self.config.logger.info("\n" + "\n".join(["%s: %s" % item for item in self.config.__dict__.items()])) | |
net = utility.get_net(self.config) | |
if device_ids == [-1]: | |
checkpoint = torch.load(model_path, map_location="cpu") | |
else: | |
checkpoint = torch.load(model_path) | |
net.load_state_dict(checkpoint["net"]) | |
if self.config.device_id == -1: | |
net = net.cpu() | |
else: | |
net = net.to(self.config.device_id) | |
net.eval() | |
self.alignment = net | |
else: | |
assert False | |
self.getCropMatrix = GetCropMatrix(image_size=self.input_size, target_face_scale=self.target_face_scale, | |
align_corners=True) | |
self.transformPerspective = TransformPerspective(image_size=self.input_size) | |
self.transformPoints2D = TransformPoints2D() | |
def norm_points(self, points, align_corners=False): | |
if align_corners: | |
# [0, SIZE-1] -> [-1, +1] | |
return points / torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) * 2 - 1 | |
else: | |
# [-0.5, SIZE-0.5] -> [-1, +1] | |
return (points * 2 + 1) / torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1 | |
def denorm_points(self, points, align_corners=False): | |
if align_corners: | |
# [-1, +1] -> [0, SIZE-1] | |
return (points + 1) / 2 * torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) | |
else: | |
# [-1, +1] -> [-0.5, SIZE-0.5] | |
return ((points + 1) * torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1) / 2 | |
def preprocess(self, image, scale, center_w, center_h): | |
matrix = self.getCropMatrix.process(scale, center_w, center_h) | |
input_tensor = self.transformPerspective.process(image, matrix) | |
input_tensor = input_tensor[np.newaxis, :] | |
input_tensor = torch.from_numpy(input_tensor) | |
input_tensor = input_tensor.float().permute(0, 3, 1, 2) | |
input_tensor = input_tensor / 255.0 * 2.0 - 1.0 | |
if self.config.device_id == -1: | |
input_tensor = input_tensor.cpu() | |
else: | |
input_tensor = input_tensor.to(self.config.device_id) | |
return input_tensor, matrix | |
def postprocess(self, srcPoints, coeff): | |
# dstPoints = self.transformPoints2D.process(srcPoints, coeff) | |
# matrix^(-1) * src = dst | |
# src = matrix * dst | |
dstPoints = np.zeros(srcPoints.shape, dtype=np.float32) | |
for i in range(srcPoints.shape[0]): | |
dstPoints[i][0] = coeff[0][0] * srcPoints[i][0] + coeff[0][1] * srcPoints[i][1] + coeff[0][2] | |
dstPoints[i][1] = coeff[1][0] * srcPoints[i][0] + coeff[1][1] * srcPoints[i][1] + coeff[1][2] | |
return dstPoints | |
def analyze(self, image, scale, center_w, center_h): | |
input_tensor, matrix = self.preprocess(image, scale, center_w, center_h) | |
if self.dl_framework == "pytorch": | |
with torch.no_grad(): | |
output = self.alignment(input_tensor) | |
landmarks = output[-1][0] | |
else: | |
assert False | |
landmarks = self.denorm_points(landmarks) | |
landmarks = landmarks.data.cpu().numpy()[0] | |
landmarks = self.postprocess(landmarks, np.linalg.inv(matrix)) | |
return landmarks | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description="inference script") | |
parser.add_argument('--folder_path', type=str, help='Path to image folder') | |
args = parser.parse_args() | |
# args.folder_path = '/media/gyalex/Data/flame/ph_test/head_images/flame/image' | |
current_path = os.getcwd() | |
use_gpu = True | |
########### face detection ############ | |
if use_gpu: | |
device = torch.device("cuda:0") | |
else: | |
device = torch.device("cpu") | |
current_path = os.getcwd() | |
det_model_path = os.path.join(current_path, 'preprocess', 'submodules', 'Landmark_detection', 'FaceBoxesV2/weights/FaceBoxesV2.pth') | |
detector = FaceBoxesDetector('FaceBoxes', det_model_path, use_gpu, device) | |
########### facial alignment ############ | |
model_path = os.path.join(current_path, 'preprocess', 'submodules', 'Landmark_detection', 'weights/68_keypoints_model.pkl') | |
if use_gpu: | |
device_ids = [0] | |
else: | |
device_ids = [-1] | |
args.config_name = 'alignment' | |
alignment = Alignment(args, model_path, dl_framework="pytorch", device_ids=device_ids) | |
img_path_list = os.listdir(args.folder_path) | |
kpts_code = dict() | |
########### inference ############ | |
for file_name in img_path_list: | |
abs_path = os.path.join(args.folder_path, file_name) | |
image = cv2.imread(abs_path) | |
image_draw = copy.deepcopy(image) | |
detections, _ = detector.detect(image, 0.6, 1) | |
for idx in range(len(detections)): | |
x1_ori = detections[idx][2] | |
y1_ori = detections[idx][3] | |
x2_ori = x1_ori + detections[idx][4] | |
y2_ori = y1_ori + detections[idx][5] | |
scale = max(x2_ori - x1_ori, y2_ori - y1_ori) / 180 | |
center_w = (x1_ori + x2_ori) / 2 | |
center_h = (y1_ori + y2_ori) / 2 | |
scale, center_w, center_h = float(scale), float(center_w), float(center_h) | |
landmarks_pv = alignment.analyze(image, scale, center_w, center_h) | |
landmarks_pv_list = landmarks_pv.tolist() | |
for num in range(landmarks_pv.shape[0]): | |
cv2.circle(image_draw, (round(landmarks_pv[num][0]), round(landmarks_pv[num][1])), | |
2, (0, 255, 0), -1) | |
kpts_code[file_name] = landmarks_pv_list | |
save_path = args.folder_path[:-5] + 'landmark' | |
cv2.imwrite(os.path.join(save_path, file_name), image_draw) | |
path = args.folder_path[:-5] | |
json.dump(kpts_code, open(os.path.join(path, 'keypoint.json'), 'w')) | |