Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,754 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
from collections import defaultdict
import glob
import os
import json
import numpy as np
from PIL import Image
import cv2
import torch
import decord
def scale_intrs(intrs, ratio_x, ratio_y):
if len(intrs.shape) >= 3:
intrs[:, 0] = intrs[:, 0] * ratio_x
intrs[:, 1] = intrs[:, 1] * ratio_y
else:
intrs[0] = intrs[0] * ratio_x
intrs[1] = intrs[1] * ratio_y
return intrs
def calc_new_tgt_size(cur_hw, tgt_size, multiply):
ratio = tgt_size / min(cur_hw)
tgt_size = int(ratio * cur_hw[0]), int(ratio * cur_hw[1])
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1]
return tgt_size, ratio_y, ratio_x
def calc_new_tgt_size_by_aspect(cur_hw, aspect_standard, tgt_size, multiply):
assert abs(cur_hw[0] / cur_hw[1] - aspect_standard) < 0.03
tgt_size = tgt_size * aspect_standard, tgt_size
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1]
return tgt_size, ratio_y, ratio_x
def _load_pose(pose):
intrinsic = torch.eye(4)
intrinsic[0, 0] = pose["focal"][0]
intrinsic[1, 1] = pose["focal"][1]
intrinsic[0, 2] = pose["princpt"][0]
intrinsic[1, 2] = pose["princpt"][1]
intrinsic = intrinsic.float()
c2w = torch.eye(4)
# c2w[:3, :3] = torch.tensor(pose["R"])
# c2w[3, :3] = torch.tensor(pose["t"])
c2w = c2w.float()
return c2w, intrinsic
def img_center_padding(img_np, pad_ratio):
ori_w, ori_h = img_np.shape[:2]
w = round((1 + pad_ratio) * ori_w)
h = round((1 + pad_ratio) * ori_h)
if len(img_np.shape) > 2:
img_pad_np = np.zeros((w, h, img_np.shape[2]), dtype=np.uint8)
else:
img_pad_np = np.zeros((w, h), dtype=np.uint8)
offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2
img_pad_np[offset_h: offset_h + img_np.shape[0]:, offset_w: offset_w + img_np.shape[1]] = img_np
return img_pad_np
def resize_image_keepaspect_np(img, max_tgt_size):
"""
similar to ImageOps.contain(img_pil, (img_size, img_size)) # keep the same aspect ratio
"""
h, w = img.shape[:2]
ratio = max_tgt_size / max(h, w)
new_h, new_w = round(h * ratio), round(w * ratio)
return cv2.resize(img, dsize=(new_w, new_h), interpolation=cv2.INTER_AREA)
def center_crop_according_to_mask(img, mask, aspect_standard, enlarge_ratio):
"""
img: [H, W, 3]
mask: [H, W]
"""
ys, xs = np.where(mask > 0)
if len(xs) == 0 or len(ys) == 0:
raise Exception("empty mask")
x_min = np.min(xs)
x_max = np.max(xs)
y_min = np.min(ys)
y_max = np.max(ys)
center_x, center_y = img.shape[1]//2, img.shape[0]//2
half_w = max(abs(center_x - x_min), abs(center_x - x_max))
half_h = max(abs(center_y - y_min), abs(center_y - y_max))
half_w_raw = half_w
half_h_raw = half_h
aspect = half_h / half_w
if aspect >= aspect_standard:
half_w = round(half_h / aspect_standard)
else:
half_h = round(half_w * aspect_standard)
if half_h > center_y:
half_w = round(half_h_raw / aspect_standard)
half_h = half_h_raw
if half_w > center_x:
half_h = round(half_w_raw * aspect_standard)
half_w = half_w_raw
if abs(enlarge_ratio[0] - 1) > 0.01 or abs(enlarge_ratio[1] - 1) > 0.01:
enlarge_ratio_min, enlarge_ratio_max = enlarge_ratio
enlarge_ratio_max_real = min(center_y / half_h, center_x / half_w)
enlarge_ratio_max = min(enlarge_ratio_max_real, enlarge_ratio_max)
enlarge_ratio_min = min(enlarge_ratio_max_real, enlarge_ratio_min)
enlarge_ratio_cur = np.random.rand() * (enlarge_ratio_max - enlarge_ratio_min) + enlarge_ratio_min
half_h, half_w = round(enlarge_ratio_cur * half_h), round(enlarge_ratio_cur * half_w)
assert half_h <= center_y
assert half_w <= center_x
assert abs(half_h / half_w - aspect_standard) < 0.03
offset_x = center_x - half_w
offset_y = center_y - half_h
new_img = img[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w]
new_mask = mask[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w]
return new_img, new_mask, offset_x, offset_y
def preprocess_image(rgb_path, mask_path, intr, pad_ratio, bg_color,
max_tgt_size, aspect_standard, enlarge_ratio,
render_tgt_size, multiply, need_mask=True):
rgb = np.array(Image.open(rgb_path))
rgb_raw = rgb.copy()
if pad_ratio > 0:
rgb = img_center_padding(rgb, pad_ratio)
rgb = rgb / 255.0
if need_mask:
if rgb.shape[2] < 4:
if mask_path is not None:
mask = np.array(Image.open(mask_path))
else:
from rembg import remove
mask = remove(rgb_raw[:, :, (2, 1, 0)])[:, :, -1] # np require [bgr]
print("rmbg mask: ", mask.min(), mask.max(), mask.shape)
if pad_ratio > 0:
mask = img_center_padding(mask, pad_ratio)
mask = mask / 255.0
else:
# rgb: [H, W, 4]
assert rgb.shape[2] == 4
mask = rgb[:, :, 3] # [H, W]
else:
# just placeholder
mask = np.ones_like(rgb[:, :, 0])
mask = (mask > 0.5).astype(np.float32)
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None])
# resize to specific size require by preprocessor of flame-estimator.
rgb = resize_image_keepaspect_np(rgb, max_tgt_size)
mask = resize_image_keepaspect_np(mask, max_tgt_size)
# crop image to enlarge human area.
rgb, mask, offset_x, offset_y = center_crop_according_to_mask(rgb, mask, aspect_standard, enlarge_ratio)
if intr is not None:
intr[0, 2] -= offset_x
intr[1, 2] -= offset_y
# resize to render_tgt_size for training
tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect(cur_hw=rgb.shape[:2],
aspect_standard=aspect_standard,
tgt_size=render_tgt_size, multiply=multiply)
rgb = cv2.resize(rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA)
mask = cv2.resize(mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA)
if intr is not None:
intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y)
assert abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5, f"{intr[0, 2] * 2}, {rgb.shape[1]}"
assert abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5, f"{intr[1, 2] * 2}, {rgb.shape[0]}"
intr[0, 2] = rgb.shape[1] // 2
intr[1, 2] = rgb.shape[0] // 2
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W]
mask = torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0) # [1, 1, H, W]
return rgb, mask, intr
def extract_imgs_from_video(video_file, save_root, fps):
print(f"extract_imgs_from_video:{video_file}")
vr = decord.VideoReader(video_file)
for i in range(0, len(vr), fps):
frame = vr[i].asnumpy()
save_path = os.path.join(save_root, f"{i:05d}.jpg")
cv2.imwrite(save_path, frame[:, :, (2, 1, 0)])
def predict_motion_seqs_from_images(image_folder:str, save_root, fps=6):
id_name = os.path.splitext(os.path.basename(image_folder))[0]
if os.path.isfile(image_folder) and (image_folder.endswith("mp4") or image_folder.endswith("move")):
save_frame_root = os.path.join(save_root, "extracted_frames", id_name)
if not os.path.exists(save_frame_root):
os.makedirs(save_frame_root, exist_ok=True)
extract_imgs_from_video(video_file=image_folder, save_root=save_frame_root, fps=fps)
else:
print("skip extract_imgs_from_video......")
image_folder = save_frame_root
image_folder_abspath = os.path.abspath(image_folder)
print(f"predict motion seq:{image_folder_abspath}")
save_flame_root = image_folder + "_flame_params_mhmr"
if not os.path.exists(save_flame_root):
cmd = f"cd thirdparty/multi-hmr && python infer_batch.py --data_root {image_folder_abspath} --out_folder {image_folder_abspath} --crop_head --crop_hand --pad_ratio 0.2 --smplify"
os.system(cmd)
else:
print("skip predict flame.........")
return save_flame_root, image_folder
def prepare_motion_seqs(motion_seqs_dir, image_folder, save_root, fps,
bg_color, aspect_standard, enlarge_ratio,
render_image_res, need_mask, multiply=16,
vis_motion=False):
if motion_seqs_dir is None:
assert image_folder is not None
motion_seqs_dir, image_folder = predict_motion_seqs_from_images(image_folder, save_root, fps)
motion_seqs = sorted(glob.glob(os.path.join(motion_seqs_dir, "*.json")))
# source images
c2ws, intrs, rgbs, bg_colors, masks = [], [], [], [], []
flame_params = []
shape_param = None
for idx, flame_path in enumerate(motion_seqs):
if image_folder is not None:
file_name = os.path.splitext(os.path.basename(flame_path))[0]
frame_path = os.path.join(image_folder, file_name + ".png")
if not os.path.exists(frame_path):
frame_path = os.path.join(image_folder, file_name + ".jpg")
with open(flame_path) as f:
flame_raw_data = json.load(f)
flame_param = {k: torch.FloatTensor(v) for k, v in flame_raw_data.items() if "pad_ratio" not in k}
if idx == 0:
shape_param = flame_param["betas"]
c2w, intrinsic = _load_pose(flame_param)
intrinsic_raw = intrinsic.clone()
if image_folder is not None:
rgb, mask, intrinsic = preprocess_image(frame_path, mask_path=None,
need_mask=need_mask,
bg_color=bg_color,
pad_ratio=float(flame_raw_data["pad_ratio"]),
max_tgt_size=int(flame_param["img_size_wh"][0]),
aspect_standard=aspect_standard,
enlarge_ratio=enlarge_ratio,
render_tgt_size=render_image_res,
multiply=multiply,
intr=intrinsic)
rgbs.append(rgb)
masks.append(mask)
c2ws.append(c2w)
bg_colors.append(bg_color)
intrs.append(intrinsic)
# intrs.append(intrinsic_raw)
flame_params.append(flame_param)
c2ws = torch.stack(c2ws, dim=0) # [N, 4, 4]
intrs = torch.stack(intrs, dim=0) # [N, 4, 4]
bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) # [N, 3]
if len(rgbs) > 0:
rgbs = torch.cat(rgbs, dim=0) # [N, 3, H, W]
# masks = torch.cat(masks, dim=0) # [N, 1, H, W]
flame_params_tmp = defaultdict(list)
for flame in flame_params:
for k, v in flame.items():
flame_params_tmp[k].append(v)
for k, v in flame_params_tmp.items():
flame_params_tmp[k] = torch.stack(v) # [Nv, xx, xx]
flame_params = flame_params_tmp
# TODO check different betas for same person
flame_params["betas"] = shape_param
if vis_motion:
motion_render = render_flame_mesh(flame_params, intrs)
else:
motion_render = None
# add batch dim
for k, v in flame_params.items():
flame_params[k] = v.unsqueeze(0)
# print(k, flame_params[k].shape, "motion_seq")
c2ws = c2ws.unsqueeze(0)
intrs = intrs.unsqueeze(0)
bg_colors = bg_colors.unsqueeze(0)
if len(rgbs) > 0:
rgbs = rgbs.unsqueeze(0)
# print(f"c2ws:{c2ws.shape}, intrs:{intrs.shape}, rgbs:{rgbs.shape if len(rgbs) > 0 else None}")
motion_seqs = {}
motion_seqs["render_c2ws"] = c2ws
motion_seqs["render_intrs"] = intrs
motion_seqs["render_bg_colors"] = bg_colors
motion_seqs["flame_params"] = flame_params
motion_seqs["rgbs"] = rgbs
motion_seqs["vis_motion_render"] = motion_render
return motion_seqs |