Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,708 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
import sys
import cv2
import math
import copy
import hashlib
import imageio
import numpy as np
import pandas as pd
from scipy import interpolate
from PIL import Image, ImageEnhance, ImageFile
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
ImageFile.LOAD_TRUNCATED_IMAGES = True
sys.path.append("./")
from external.landmark_detection.lib.dataset.augmentation import Augmentation
from external.landmark_detection.lib.dataset.encoder import get_encoder
class AlignmentDataset(Dataset):
def __init__(self, tsv_flie, image_dir="", transform=None,
width=256, height=256, channels=3,
means=(127.5, 127.5, 127.5), scale=1 / 127.5,
classes_num=None, crop_op=True, aug_prob=0.0, edge_info=None, flip_mapping=None, is_train=True,
encoder_type='default',
):
super(AlignmentDataset, self).__init__()
self.use_AAM = True
self.encoder_type = encoder_type
self.encoder = get_encoder(height, width, encoder_type=encoder_type)
self.items = pd.read_csv(tsv_flie, sep="\t")
self.image_dir = image_dir
self.landmark_num = classes_num[0]
self.transform = transform
self.image_width = width
self.image_height = height
self.channels = channels
assert self.image_width == self.image_height
self.means = means
self.scale = scale
self.aug_prob = aug_prob
self.edge_info = edge_info
self.is_train = is_train
std_lmk_5pts = np.array([
196.0, 226.0,
316.0, 226.0,
256.0, 286.0,
220.0, 360.4,
292.0, 360.4], np.float32) / 256.0 - 1.0
std_lmk_5pts = np.reshape(std_lmk_5pts, (5, 2)) # [-1 1]
target_face_scale = 1.0 if crop_op else 1.25
self.augmentation = Augmentation(
is_train=self.is_train,
aug_prob=self.aug_prob,
image_size=self.image_width,
crop_op=crop_op,
std_lmk_5pts=std_lmk_5pts,
target_face_scale=target_face_scale,
flip_rate=0.5,
flip_mapping=flip_mapping,
random_shift_sigma=0.05,
random_rot_sigma=math.pi / 180 * 18,
random_scale_sigma=0.1,
random_gray_rate=0.2,
random_occ_rate=0.4,
random_blur_rate=0.3,
random_gamma_rate=0.2,
random_nose_fusion_rate=0.2)
def _circle(self, img, pt, sigma=1.0, label_type='Gaussian'):
# Check that any part of the gaussian is in-bounds
tmp_size = sigma * 3
ul = [int(pt[0] - tmp_size), int(pt[1] - tmp_size)]
br = [int(pt[0] + tmp_size + 1), int(pt[1] + tmp_size + 1)]
if (ul[0] > img.shape[1] - 1 or ul[1] > img.shape[0] - 1 or
br[0] - 1 < 0 or br[1] - 1 < 0):
# If not, just return the image as is
return img
# Generate gaussian
size = 2 * tmp_size + 1
x = np.arange(0, size, 1, np.float32)
y = x[:, np.newaxis]
x0 = y0 = size // 2
# The gaussian is not normalized, we want the center value to equal 1
if label_type == 'Gaussian':
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
else:
g = sigma / (((x - x0) ** 2 + (y - y0) ** 2 + sigma ** 2) ** 1.5)
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], img.shape[1])
img_y = max(0, ul[1]), min(br[1], img.shape[0])
img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = 255 * g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return img
def _polylines(self, img, lmks, is_closed, color=255, thickness=1, draw_mode=cv2.LINE_AA,
interpolate_mode=cv2.INTER_AREA, scale=4):
h, w = img.shape
img_scale = cv2.resize(img, (w * scale, h * scale), interpolation=interpolate_mode)
lmks_scale = (lmks * scale + 0.5).astype(np.int32)
cv2.polylines(img_scale, [lmks_scale], is_closed, color, thickness * scale, draw_mode)
img = cv2.resize(img_scale, (w, h), interpolation=interpolate_mode)
return img
def _generate_edgemap(self, points, scale=0.25, thickness=1):
h, w = self.image_height, self.image_width
edgemaps = []
for is_closed, indices in self.edge_info:
edgemap = np.zeros([h, w], dtype=np.float32)
# align_corners: False.
part = copy.deepcopy(points[np.array(indices)])
part = self._fit_curve(part, is_closed)
part[:, 0] = np.clip(part[:, 0], 0, w - 1)
part[:, 1] = np.clip(part[:, 1], 0, h - 1)
edgemap = self._polylines(edgemap, part, is_closed, 255, thickness)
edgemaps.append(edgemap)
edgemaps = np.stack(edgemaps, axis=0) / 255.0
edgemaps = torch.from_numpy(edgemaps).float().unsqueeze(0)
edgemaps = F.interpolate(edgemaps, size=(int(w * scale), int(h * scale)), mode='bilinear',
align_corners=False).squeeze()
return edgemaps
def _fit_curve(self, lmks, is_closed=False, density=5):
try:
x = lmks[:, 0].copy()
y = lmks[:, 1].copy()
if is_closed:
x = np.append(x, x[0])
y = np.append(y, y[0])
tck, u = interpolate.splprep([x, y], s=0, per=is_closed, k=3)
# bins = (x.shape[0] - 1) * density + 1
# lmk_x, lmk_y = interpolate.splev(np.linspace(0, 1, bins), f)
intervals = np.array([])
for i in range(len(u) - 1):
intervals = np.concatenate((intervals, np.linspace(u[i], u[i + 1], density, endpoint=False)))
if not is_closed:
intervals = np.concatenate((intervals, [u[-1]]))
lmk_x, lmk_y = interpolate.splev(intervals, tck, der=0)
# der_x, der_y = interpolate.splev(intervals, tck, der=1)
curve_lmks = np.stack([lmk_x, lmk_y], axis=-1)
# curve_ders = np.stack([der_x, der_y], axis=-1)
# origin_indices = np.arange(0, curve_lmks.shape[0], density)
return curve_lmks
except:
return lmks
def _image_id(self, image_path):
if not os.path.exists(image_path):
image_path = os.path.join(self.image_dir, image_path)
return hashlib.md5(open(image_path, "rb").read()).hexdigest()
def _load_image(self, image_path):
if not os.path.exists(image_path):
image_path = os.path.join(self.image_dir, image_path)
try:
# img = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)#HWC, BGR, [0-255]
img = cv2.imread(image_path, cv2.IMREAD_COLOR) # HWC, BGR, [0-255]
assert img is not None and len(img.shape) == 3 and img.shape[2] == 3
except:
try:
img = imageio.imread(image_path) # HWC, RGB, [0-255]
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # HWC, BGR, [0-255]
assert img is not None and len(img.shape) == 3 and img.shape[2] == 3
except:
try:
gifImg = imageio.mimread(image_path) # BHWC, RGB, [0-255]
img = gifImg[0] # HWC, RGB, [0-255]
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # HWC, BGR, [0-255]
assert img is not None and len(img.shape) == 3 and img.shape[2] == 3
except:
img = None
return img
def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center):
cosv = math.cos(angle)
sinv = math.sin(angle)
fx, fy = from_center
tx, ty = to_center
acos = scale * cosv
asin = scale * sinv
a0 = acos
a1 = -asin
a2 = tx - acos * fx + asin * fy + shift_xy[0]
b0 = asin
b1 = acos
b2 = ty - asin * fx - acos * fy + shift_xy[1]
rot_scale_m = np.array([
[a0, a1, a2],
[b0, b1, b2],
[0.0, 0.0, 1.0]
], np.float32)
return rot_scale_m
def _transformPoints2D(self, points, matrix):
"""
points (nx2), matrix (3x3) -> points (nx2)
"""
dtype = points.dtype
# nx3
points = np.concatenate([points, np.ones_like(points[:, [0]])], axis=1)
points = points @ np.transpose(matrix) # nx3
points = points[:, :2] / points[:, [2, 2]]
return points.astype(dtype)
def _transformPerspective(self, image, matrix, target_shape):
"""
image, matrix3x3 -> transformed_image
"""
return cv2.warpPerspective(
image, matrix,
dsize=(target_shape[1], target_shape[0]),
flags=cv2.INTER_LINEAR, borderValue=0)
def _norm_points(self, points, h, w, align_corners=False):
if align_corners:
# [0, SIZE-1] -> [-1, +1]
des_points = points / torch.tensor([w - 1, h - 1]).to(points).view(1, 2) * 2 - 1
else:
# [-0.5, SIZE-0.5] -> [-1, +1]
des_points = (points * 2 + 1) / torch.tensor([w, h]).to(points).view(1, 2) - 1
des_points = torch.clamp(des_points, -1, 1)
return des_points
def _denorm_points(self, points, h, w, align_corners=False):
if align_corners:
# [-1, +1] -> [0, SIZE-1]
des_points = (points + 1) / 2 * torch.tensor([w - 1, h - 1]).to(points).view(1, 1, 2)
else:
# [-1, +1] -> [-0.5, SIZE-0.5]
des_points = ((points + 1) * torch.tensor([w, h]).to(points).view(1, 1, 2) - 1) / 2
return des_points
def __len__(self):
return len(self.items)
def __getitem__(self, index):
sample = dict()
image_path = self.items.iloc[index, 0]
landmarks_5pts = self.items.iloc[index, 1]
landmarks_5pts = np.array(list(map(float, landmarks_5pts.split(","))), dtype=np.float32).reshape(5, 2)
landmarks_target = self.items.iloc[index, 2]
landmarks_target = np.array(list(map(float, landmarks_target.split(","))), dtype=np.float32).reshape(
self.landmark_num, 2)
scale = float(self.items.iloc[index, 3])
center_w, center_h = float(self.items.iloc[index, 4]), float(self.items.iloc[index, 5])
if len(self.items.iloc[index]) > 6:
tags = np.array(list(map(lambda x: int(float(x)), self.items.iloc[index, 6].split(","))))
else:
tags = np.array([])
# image & keypoints alignment
image_path = image_path.replace('\\', '/')
# wflw testset
image_path = image_path.replace(
'//msr-facestore/Workspace/MSRA_EP_Allergan/users/yanghuan/training_data/wflw/rawImages/', '')
# trainset
image_path = image_path.replace('./rawImages/', '')
image_path = os.path.join(self.image_dir, image_path)
# image path
sample["image_path"] = image_path
img = self._load_image(image_path) # HWC, BGR, [0, 255]
assert img is not None
# augmentation
# landmarks_target = [-0.5, edge-0.5]
img, landmarks_target, matrix = \
self.augmentation.process(img, landmarks_target, landmarks_5pts, scale, center_w, center_h)
landmarks = self._norm_points(torch.from_numpy(landmarks_target), self.image_height, self.image_width)
sample["label"] = [landmarks, ]
if self.use_AAM:
pointmap = self.encoder.generate_heatmap(landmarks_target)
edgemap = self._generate_edgemap(landmarks_target)
sample["label"] += [pointmap, edgemap]
sample['matrix'] = matrix
# image normalization
img = img.transpose(2, 0, 1).astype(np.float32) # CHW, BGR, [0, 255]
img[0, :, :] = (img[0, :, :] - self.means[0]) * self.scale
img[1, :, :] = (img[1, :, :] - self.means[1]) * self.scale
img[2, :, :] = (img[2, :, :] - self.means[2]) * self.scale
sample["data"] = torch.from_numpy(img) # CHW, BGR, [-1, 1]
sample["tags"] = tags
return sample
|