File size: 9,620 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import cv2
import math
import argparse
import numpy as np
from tqdm import tqdm

import torch

# private package
from lib import utility



class GetCropMatrix():
    """

    from_shape -> transform_matrix

    """

    def __init__(self, image_size, target_face_scale, align_corners=False):
        self.image_size = image_size
        self.target_face_scale = target_face_scale
        self.align_corners = align_corners

    def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center):
        cosv = math.cos(angle)
        sinv = math.sin(angle)

        fx, fy = from_center
        tx, ty = to_center

        acos = scale * cosv
        asin = scale * sinv

        a0 = acos
        a1 = -asin
        a2 = tx - acos * fx + asin * fy + shift_xy[0]

        b0 = asin
        b1 = acos
        b2 = ty - asin * fx - acos * fy + shift_xy[1]

        rot_scale_m = np.array([
            [a0, a1, a2],
            [b0, b1, b2],
            [0.0, 0.0, 1.0]
        ], np.float32)
        return rot_scale_m

    def process(self, scale, center_w, center_h):
        if self.align_corners:
            to_w, to_h = self.image_size - 1, self.image_size - 1
        else:
            to_w, to_h = self.image_size, self.image_size

        rot_mu = 0
        scale_mu = self.image_size / (scale * self.target_face_scale * 200.0)
        shift_xy_mu = (0, 0)
        matrix = self._compose_rotate_and_scale(
            rot_mu, scale_mu, shift_xy_mu,
            from_center=[center_w, center_h],
            to_center=[to_w / 2.0, to_h / 2.0])
        return matrix


class TransformPerspective():
    """

    image, matrix3x3 -> transformed_image

    """

    def __init__(self, image_size):
        self.image_size = image_size

    def process(self, image, matrix):
        return cv2.warpPerspective(
            image, matrix, dsize=(self.image_size, self.image_size),
            flags=cv2.INTER_LINEAR, borderValue=0)


class TransformPoints2D():
    """

    points (nx2), matrix (3x3) -> points (nx2)

    """

    def process(self, srcPoints, matrix):
        # nx3
        desPoints = np.concatenate([srcPoints, np.ones_like(srcPoints[:, [0]])], axis=1)
        desPoints = desPoints @ np.transpose(matrix)  # nx3
        desPoints = desPoints[:, :2] / desPoints[:, [2, 2]]
        return desPoints.astype(srcPoints.dtype)


class Alignment:
    def __init__(self, args, model_path, dl_framework, device_ids):
        self.input_size = 256
        self.target_face_scale = 1.0
        self.dl_framework = dl_framework

        # model
        if self.dl_framework == "pytorch":
            # conf
            self.config = utility.get_config(args)
            self.config.device_id = device_ids[0]
            # set environment
            utility.set_environment(self.config)
            self.config.init_instance()
            if self.config.logger is not None:
                self.config.logger.info("Loaded configure file %s: %s" % (args.config_name, self.config.id))
                self.config.logger.info("\n" + "\n".join(["%s: %s" % item for item in self.config.__dict__.items()]))

            net = utility.get_net(self.config)
            if device_ids == [-1]:
                checkpoint = torch.load(model_path, map_location="cpu")
            else:
                checkpoint = torch.load(model_path)
            net.load_state_dict(checkpoint["net"])
            net = net.to(self.config.device_id)
            net.eval()
            self.alignment = net
        else:
            assert False

        self.getCropMatrix = GetCropMatrix(image_size=self.input_size, target_face_scale=self.target_face_scale,
                                           align_corners=True)
        self.transformPerspective = TransformPerspective(image_size=self.input_size)
        self.transformPoints2D = TransformPoints2D()

    def norm_points(self, points, align_corners=False):
        if align_corners:
            # [0, SIZE-1] -> [-1, +1]
            return points / torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) * 2 - 1
        else:
            # [-0.5, SIZE-0.5] -> [-1, +1]
            return (points * 2 + 1) / torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1

    def denorm_points(self, points, align_corners=False):
        if align_corners:
            # [-1, +1] -> [0, SIZE-1]
            return (points + 1) / 2 * torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2)
        else:
            # [-1, +1] -> [-0.5, SIZE-0.5]
            return ((points + 1) * torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1) / 2

    def preprocess(self, image, scale, center_w, center_h):
        matrix = self.getCropMatrix.process(scale, center_w, center_h)
        input_tensor = self.transformPerspective.process(image, matrix)
        input_tensor = input_tensor[np.newaxis, :]

        input_tensor = torch.from_numpy(input_tensor)
        input_tensor = input_tensor.float().permute(0, 3, 1, 2)
        input_tensor = input_tensor / 255.0 * 2.0 - 1.0
        input_tensor = input_tensor.to(self.config.device_id)
        return input_tensor, matrix

    def postprocess(self, srcPoints, coeff):
        # dstPoints = self.transformPoints2D.process(srcPoints, coeff)
        # matrix^(-1) * src = dst
        # src = matrix * dst
        dstPoints = np.zeros(srcPoints.shape, dtype=np.float32)
        for i in range(srcPoints.shape[0]):
            dstPoints[i][0] = coeff[0][0] * srcPoints[i][0] + coeff[0][1] * srcPoints[i][1] + coeff[0][2]
            dstPoints[i][1] = coeff[1][0] * srcPoints[i][0] + coeff[1][1] * srcPoints[i][1] + coeff[1][2]
        return dstPoints

    def analyze(self, image, scale, center_w, center_h):
        input_tensor, matrix = self.preprocess(image, scale, center_w, center_h)

        if self.dl_framework == "pytorch":
            with torch.no_grad():
                output = self.alignment(input_tensor)
            landmarks = output[-1][0]
        else:
            assert False

        landmarks = self.denorm_points(landmarks)
        landmarks = landmarks.data.cpu().numpy()[0]
        landmarks = self.postprocess(landmarks, np.linalg.inv(matrix))

        return landmarks


def L2(p1, p2):
    return np.linalg.norm(p1 - p2)


def NME(landmarks_gt, landmarks_pv):
    pts_num = landmarks_gt.shape[0]
    if pts_num == 29:
        left_index = 16
        right_index = 17
    elif pts_num == 68:
        left_index = 36
        right_index = 45
    elif pts_num == 98:
        left_index = 60
        right_index = 72

    nme = 0
    eye_span = L2(landmarks_gt[left_index], landmarks_gt[right_index])
    for i in range(pts_num):
        error = L2(landmarks_pv[i], landmarks_gt[i])
        nme += error / eye_span
    nme /= pts_num
    return nme


def evaluate(args, model_path, metadata_path, device_ids, mode):
    alignment = Alignment(args, model_path, dl_framework="pytorch", device_ids=device_ids)
    config = alignment.config
    nme_sum = 0
    with open(metadata_path, 'r') as f:
        lines = f.readlines()
    for k, line in enumerate(tqdm(lines)):
        item = line.strip().split("\t")
        image_name, landmarks_5pts, landmarks_gt, scale, center_w, center_h = item[:6]
        # image & keypoints alignment
        image_name = image_name.replace('\\', '/')
        image_name = image_name.replace('//msr-facestore/Workspace/MSRA_EP_Allergan/users/yanghuan/training_data/wflw/rawImages/', '')
        image_name = image_name.replace('./rawImages/', '')
        image_path = os.path.join(config.image_dir, image_name)
        landmarks_gt = np.array(list(map(float, landmarks_gt.split(","))), dtype=np.float32).reshape(-1, 2)
        scale, center_w, center_h = float(scale), float(center_w), float(center_h)

        image = cv2.imread(image_path)
        landmarks_pv = alignment.analyze(image, scale, center_w, center_h)

        # NME
        if mode == "nme":
            nme = NME(landmarks_gt, landmarks_pv)
            nme_sum += nme
            # print("Current NME(%d): %f" % (k + 1, (nme_sum / (k + 1))))
        else:
            pass

    if mode == "nme":
        print("Final NME: %f" % (100*nme_sum / (k + 1)))
    else:
        pass


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Evaluation script")
    parser.add_argument("--config_name", type=str, default="alignment", help="set configure file name")
    parser.add_argument("--model_path", type=str, default="./train.pkl", help="the path of model")
    parser.add_argument("--data_definition", type=str, default='WFLW', help="COFW/300W/WFLW")
    parser.add_argument("--metadata_path", type=str, default="", help="the path of metadata")
    parser.add_argument("--image_dir", type=str, default="", help="the path of image")
    parser.add_argument("--device_ids", type=str, default="0", help="set device ids, -1 means use cpu device, >= 0 means use gpu device")
    parser.add_argument("--mode", type=str, default="nme", help="set the evaluate mode: nme")
    args = parser.parse_args()

    device_ids = list(map(int, args.device_ids.split(",")))
    evaluate(
        args,
        model_path=args.model_path,
        metadata_path=args.metadata_path,
        device_ids=device_ids,
        mode=args.mode)