File size: 16,666 Bytes
6c9ff9d b92422b 6c9ff9d b92422b 6c9ff9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import gradio as gr
from pathlib import Path
import uuid
import random
from utils.data_utils import generate_leaderboard
from utils.plot_utils import plot_ratings
from utils.utils import simulate, submit_rating, generate_matchup
from config import MODE, VIDEOS, MODELS, CRITERIA, default_beta
head = f"""
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/plotly.js/1.33.1/plotly.min.js"></script>
<script>{Path('static/modelViewer.js').read_text()}</script>
<script>{Path('static/popup.js').read_text()}</script>
<script>{Path('static/plots.js').read_text()}</script>
"""
with gr.Blocks(title='3D Animation Arena', head=head, css_paths='static/style.css') as arena:
sessionState = gr.State({
'video': None,
'modelLeft': None,
'modelRight': None,
'darkMode': False,
'videos': VIDEOS,
'currentTab': CRITERIA[0],
'uuid': None
})
frontState = gr.JSON(sessionState, visible=False)
with gr.Row():
with gr.Column(scale=1):
gr.HTML('')
with gr.Column(scale=12):
gr.HTML("<h1 style='text-align:center; font-size:50px'>3D Animation Arena</h1>")
with gr.Column(scale=1):
toggle_dark = gr.Button(value="Dark Mode")
def update_toggle_dark(state):
state['darkMode'] = not state['darkMode']
if state['darkMode']:
return gr.update(value="Light Mode"), state
else:
return gr.update(value="Dark Mode"), state
toggle_dark.click(
inputs=[sessionState],
js="""
() => {
document.body.classList.toggle('dark');
}
""",
fn=update_toggle_dark,
outputs=[toggle_dark, sessionState]
)
with gr.Tab(label='Arena'):
models = gr.HTML('''
<div class="viewer-container">
<iframe
id="modelViewerLeft"
src="https://d39vhmln1nnc4z.cloudfront.net/index.html"
width="100%"
height="100%"
allow="storage-access"
></iframe>
<iframe
id="modelViewerRight"
src="https://d39vhmln1nnc4z.cloudfront.net/index.html"
width="100%"
height="100%"
allow="storage-access"
></iframe>
</div>''',
render=False)
with gr.Row():
with gr.Column(scale=1):
gr.HTML(f"<h1>1. Choose a video below:</h1>")
video = gr.Video(
label='Input Video',
interactive=False,
autoplay=True,
show_download_button=False,
loop=True,
elem_id='gradioVideo',
)
triggerButtons = {}
for vid in sessionState.value['videos']:
triggerButtons[vid] = gr.Button(elem_id=f'triggerBtn_{vid}', visible=False)
triggerButtons[vid].click(
fn=lambda vid=vid: gr.update(value=f'https://gradio-model-viewer.s3.eu-west-1.amazonaws.com/sample+videos/{vid}.mp4'),
outputs=[video]
)
examples = gr.HTML(visible=False)
with gr.Column(scale=4):
gr.HTML("""
<h1>2. Play around with the models:
<span class="glyphicon glyphicon-question-sign popup-btn btn btn-info btn-lg" data-popup-id="instructionsPopup">
<span class="popup-text" id="instructionsPopup">You can control the playback in both viewers at the same time by using the video, or control both viewers independently by using mouse and GUI!</span>
</span>
</h1>
""")
with gr.Row():
models.render()
with gr.Row():
gr.HTML(f"<h1>3. Choose your favorite model for each criteria:</h1>")
ratingButtons = {}
for criteria in CRITERIA:
with gr.Row():
with gr.Column():
with gr.Row():
match criteria:
case 'Global_Appreciation':
instructions = "Your overall appreciation of the models, including general aesthetics and self-contacts if applicable."
case 'Ground_Contacts':
instructions = "The quality of the models' contacts with the ground, including ground penetration and foot sliding."
case 'Fidelity':
instructions = "The fidelity of the models compared to the motion of the original video."
case 'Fluidity':
instructions = "The smoothness and temporal coherence of the models."
gr.HTML(f"""
<h2 style='text-align:center;'>{criteria.replace('_', ' ')}
<span class="glyphicon glyphicon-question-sign popup-btn btn btn-info btn-lg" data-popup-id="{criteria}Popup">
<span class="popup-text" id="{criteria}Popup">{instructions}</span>
</span></h2>
""")
with gr.Row():
ratingButtons[criteria] = []
with gr.Column(scale=2):
ratingButtons[criteria].append(gr.Button('Left Model', variant='primary', interactive=False))
with gr.Column(scale=1, min_width=2):
ratingButtons[criteria].append(gr.Button('Skip', min_width=2, interactive=False))
with gr.Column(scale=2):
ratingButtons[criteria].append(gr.Button('Right Model', variant='primary', interactive=False))
# Leaderboard per criteria
with gr.Tab(label='Leaderboards') as leaderboard_tab:
if MODE == 'testing':
# Simulation controls
with gr.Row():
simulate_btn = gr.Button('Simulate Matches', variant='primary')
add_model_btn = gr.Button('Add Model', variant='secondary')
with gr.Row():
gr.Markdown('''
## Probability of each model to be chosen is updated after each vote following: \
$$ p_i = \\frac{e^{-\\frac{Matches_i}{\\beta}}}{\\sum_{j=1}^{N} e^{-\\frac{Matches_j}{\\beta}}} $$
''')
iterate = gr.Number(label='Number of iterations', value=100, minimum=1, maximum=2000, precision=0, interactive=True)
beta = gr.Number(label='Beta', value=default_beta, minimum=1, maximum=1000, precision=0, step=10, interactive=True)
else:
beta = gr.Number(label='Beta', value=default_beta, render=False)
leaderboards = {}
tabs = {}
for criteria in CRITERIA:
with gr.Tab(label=criteria.replace('_', ' ')) as tabs[criteria]:
with gr.Row():
gr.HTML(f"<h2 style='text-align:center;'>{criteria.replace('_', ' ')}</h2>")
with gr.Row():
leaderboards[criteria] = gr.Dataframe(value=None, row_count=(len(MODELS), 'fixed'), headers=['Model', 'Elo', 'Wins', 'Matches', 'Win Rate'], interactive=False)
# Plots
if MODE == 'testing':
with gr.Row():
elo_plot = gr.Plot(value=None, label='Elo Ratings', format='plotly', elem_id='plot')
with gr.Row():
wr_plot = gr.Plot(value=None, label='Win Rates', format='plotly', elem_id='plot')
with gr.Row():
matches_plot = gr.Plot(value=None, label='Matches played', format='plotly', elem_id='plot')
elif MODE == 'production':
elo_plot = gr.Plot(value=None, label='Elo Ratings', format='plotly', elem_id='plot', visible=False)
wr_plot = gr.Plot(value=None, label='Win Rates', format='plotly', elem_id='plot', visible=False)
matches_plot = gr.Plot(value=None, label='Matches played', format='plotly', elem_id='plot', visible=False)
with gr.Tab(label='About'):
gr.Markdown('''
## Thank you for using the 3D Animation Arena!
This app is designed to compare different models based on human preferences, inspired by dylanebert's [3D Arena](https://huggingface.co/spaces/dylanebert/3d-arena) on Hugging Face.
Current rankings often use metrics to assess the quality of a model, but these metrics may not always reflect the complexity behind human preferences.
The current models competing in the arena are:
- 4DHumans (https://github.com/shubham-goel/4D-Humans)
- CLIFF (https://github.com/haofanwang/CLIFF)
- GVHMR (https://github.com/zju3dv/GVHMR)
- HybrIK (https://github.com/jeffffffli/HybrIK)
- WHAM (https://github.com/yohanshin/WHAM)
- CameraHMR (https://github.com/pixelite1201/CameraHMR)
- STAF (https://github.com/yw0208/STAF)
- TokenHMR (https://github.com/saidwivedi/TokenHMR)
All inferences are precomputed following the code in the associated GitHub repository.
Some post-inference modifications have been made to some models in order to make the comparison possible.
These modifications include:
* Adjusting height to a common ground
* Fixing the root depth of certain models, when depth was extremely jittery
All models use the SMPL body model to discard the influence of the body model on the comparison.
These choices were made without any intention to favor or harm any model.
The videos were selected to tests models on a large variety of motions, don't hesitate to send me your videos if you want to have it uploaded in the arena!
All matchups are generated randomly, don't hesitate to rate the same videos multiple times as the matchups will probably be different!
---
If you have comments, complaints or suggestions, please contact me at [email protected].
New models and videos will be added over time, feel free to share your ideas! Keep in mind that I will not add raw inferences from other people to keep it fair.
''')
# Event handlers
def randomize_videos(state):
state['uuid'] = str(uuid.uuid4())
random.shuffle(state['videos'])
gallery = "<div class='gallery'>"
for vid in state['videos']:
gallery += f"""
<button class="btn btn-info thumbnail-btn" onclick="(function() {{
let gradioVideo = document.getElementById('gradioVideo');
let videoComponent = gradioVideo ? gradioVideo.querySelector('video') : null;
if (videoComponent && !videoComponent.src.includes('{vid}')) {{
Array.from(document.getElementsByClassName('thumbnail-btn')).forEach(btn => btn.disabled = true);
}}
document.getElementById('triggerBtn_{vid}').click();
}})()">
<video class="thumbnail" preload="" loop muted onmouseenter="this.play()" onmouseleave="this.pause()">
<source src="https://gradio-model-viewer.s3.eu-west-1.amazonaws.com/sample+videos/{vid}.mp4">
</video>
</button>
"""
gallery += "</div>"
return state, gallery
async def display_leaderboards():
return [await generate_leaderboard(criteria) for criteria in CRITERIA]
arena.load(
inputs=[sessionState],
fn=lambda state: randomize_videos(state),
outputs=[sessionState, examples],
).then(
inputs=[],
fn=lambda: gr.update(visible=True),
outputs=[examples]
).then(
inputs=[gr.State(CRITERIA[0])],
fn=plot_ratings,
outputs=[elo_plot, wr_plot, matches_plot]
).then(
inputs=[],
fn=display_leaderboards,
outputs=[leaderboards[criteria] for criteria in CRITERIA]
)
async def update_models(video, state):
leaderboard = await generate_leaderboard(CRITERIA[0])
video_name = video.split('/')[-1].split('.')[0]
modelLeft, modelRight = generate_matchup(leaderboard=leaderboard, beta=beta.value)
state['video'] = video_name
state['modelLeft'] = MODELS[modelLeft]
state['modelRight'] = MODELS[modelRight]
return state, state
video.change(
inputs=[video, sessionState],
fn=update_models,
outputs=[sessionState, frontState]
)
# Weird workaround to run JS function on state change, from https://github.com/gradio-app/gradio/issues/3525#issuecomment-2348596861
frontState.change(
inputs=[frontState],
js='(state) => updateViewers(state)',
fn=lambda state: None,
).then(
inputs=None,
fn=lambda: tuple(gr.update(interactive=True) for _ in sum(ratingButtons.values(), [])),
outputs= sum(ratingButtons.values(), [])
)
leaderboard_tab.select(
inputs=None,
js='() => resetPlots()',
fn=None,
).then(
fn=lambda: [gr.update(value=None) for _ in range(3)],
outputs=[elo_plot, wr_plot, matches_plot]
).then(
inputs=[sessionState],
fn=lambda state: plot_ratings(state['currentTab']),
outputs=[elo_plot, wr_plot, matches_plot]
)
async def process_rating(state, i, criteria):
return gr.update(value=await submit_rating(
criteria=criteria,
winner=state['modelLeft'] if i == 0 else state['modelRight'] if i == 2 else None,
loser=state['modelRight'] if i == 0 else state['modelLeft'] if i == 2 else None,
uuid=state['uuid']
))
def update_tab(state, criteria):
state['currentTab'] = criteria
return state
for criteria in CRITERIA:
for i, button in enumerate(ratingButtons[criteria]):
button.click(
# fn=lambda i=i, criteria=criteria: gr.Info(f'{"You chose Left Model for " if i == 0 else "You chose Right Model for " if i == 2 else "You skipped "} {criteria.replace("_", " ")}!'),
# ).then(
fn=lambda: tuple(gr.update(interactive=False) for _ in range(len(ratingButtons[criteria]))),
outputs=ratingButtons[criteria]
).then(
inputs=[sessionState, gr.State(i), gr.State(criteria)],
fn=process_rating,
outputs=[leaderboards[criteria]],
)
tabs[criteria].select(
fn=lambda: [gr.update(value=None) for _ in range(3)],
outputs=[elo_plot, wr_plot, matches_plot]
).then(
inputs=[gr.State(criteria)],
fn=plot_ratings,
outputs=[elo_plot, wr_plot, matches_plot]
).then(
inputs=[sessionState, gr.State(criteria)],
fn=update_tab,
outputs=[sessionState]
)
if MODE == 'testing':
for criteria in CRITERIA:
simulate_btn.click(
inputs=[iterate, beta, gr.State(criteria)],
fn=simulate,
outputs=[leaderboards[criteria]],
).then(fn=lambda: [gr.update(value=None) for _ in range(3)],
outputs=[elo_plot, wr_plot, matches_plot]
).then(
inputs=[gr.State(criteria)],
fn=plot_ratings,
outputs=[elo_plot, wr_plot, matches_plot]
)
add_model_btn.click(
fn=lambda: MODELS.append(f'model_{len(MODELS)}'),
)
if __name__ == '__main__':
gr.set_static_paths(['static'])
arena.queue(default_concurrency_limit=50).launch(inbrowser=True, allowed_paths=['static/']) |