import threading import queue import subprocess import matplotlib.pyplot as plt import numpy as np import os import signal import re import time from typing import Dict, Any, Optional from .command import build_command_list import logging import json import io import base64 class TrainingMonitor: def __init__(self): """Initialize training monitor.""" # Queues for thread-safe data exchange self.stats_queue = queue.Queue() self.message_queue = queue.Queue() self.is_training = False self.stop_thread = False self.process = None self.training_thread = None self.debug_progress = False # Enable for debug info # Metrics tracking self._reset_tracking() # Progress tracking self.current_progress = { 'stage': 'Waiting', # Training/Validation/Testing 'progress': '', # Progress bar text 'epoch': 0, 'current': 0, 'total': 100, 'total_epochs': 0, # Add total_epochs field, for storing total training rounds 'val_accuracy': 0.0, 'best_accuracy': 0.0, 'best_epoch': 0, 'best_metric_name': 'accuracy', # Name of the best metric 'best_metric_value': 0.0, # Value of the best metric 'progress_detail': '', # Detailed progress information 'elapsed_time': '', # Elapsed time 'remaining_time': '', # Remaining time 'it_per_sec': 0.0, # Iterations per second 'grad_step': 0, # Gradient steps 'loss': 0.0, # Loss value 'test_metrics': {}, # Add test metrics container 'test_progress': 0.0, # Test progress percentage 'test_results_html': '', # HTML formatted test results 'lines': [] # 添加lines字段来存储输出行 } self.error_message = None self.skip_output_patterns = [ r"Model Parameters Statistics:", r"Dataset Statistics:", r"Sample \d+ data points from train dataset:" ] # Simplified regex patterns self.patterns = { # Basic training log patterns 'train': r'Epoch (\d+) Train Loss: ([\d.]+)', 'val': r'Epoch (\d+) Val Loss: ([\d.]+)', 'val_metric': r'Epoch (\d+) Val ([a-zA-Z_\-]+(?:\s[a-zA-Z_\-]+)*): ([\d.]+)', 'epoch_header': r'---------- Epoch (\d+) ----------', 'best_save': r'Saving model with best val ([a-zA-Z_\-]+(?:\s[a-zA-Z_\-]+)*): ([\d.]+)', # Test result patterns - improved to match log format exactly 'test_header': r'Test Results:', 'test_phase_start': r'---------- Starting Test Phase ----------', # 修改测试指标模式,使其更加通用 'test_metric': r'Test\s+([a-zA-Z0-9_\-]+):\s+([\d.]+)', # 添加特定的f1指标模式 'test_f1': r'Test\s+f1:\s+([\d.]+)', # 其他常见指标模式 'test_common_metrics': r'Test\s+((?:accuracy|precision|recall|auroc|mcc)):\s*([\d.]+)', # 特定的loss模式 'test_loss': r'Test\s+Loss:\s*([\d.]+)', # 替代格式模式 'test_alt_format': r'([a-zA-Z0-9_\-]+(?:\s[a-zA-Z0-9_\-]+)*)\s+on\s+test:\s*([\d.]+)', # Model parameter statistics 'model_param': r'([A-Za-z\s]+):\s*([\d,.]+[KM]?)', } # Progress bar patterns - Updated to handle both Validating and Testing phases self.progress_patterns = { 'train': r'Training:\s*(\d+)%\|[^|]*\|\s*(\d+)/(\d+)\s*\[([\d:]+)<([\d:]+),\s*([\d.]+)it/s(?:,\s*grad_step=(\d+),\s*train_loss=([\d.]+))?\]', # Combined pattern for both Validating and Testing since they use same tqdm format 'valid_or_test': r'(?:Validating|Valid|Testing|Test):\s*(\d+)%\|[^|]*\|\s*(\d+)/(\d+)\s*\[([\d:]+)<([\d:]+),\s*([\d.]+)it/s(?:[^\]]*)\]', } # Test results storage self.test_results = {} self.parsing_test_results = False self.test_results_table = None self.test_results_html = None def _should_skip_line(self, line: str) -> bool: """Check if the line should be skipped from output.""" for pattern in self.skip_output_patterns: if re.search(pattern, line): return True return False def _process_output(self, process): """Process output from training process in real-time.""" while True: if self.stop_thread: break output = process.stdout.readline() if output == '' and process.poll() is not None: break if output: line = output.strip() if not self._should_skip_line(line): self.message_queue.put(line) self._process_output_line(line) process.stdout.close() def start_training(self, args: Dict[str, Any]): """Start training process.""" if self.is_training: self.message_queue.put("Training already in progress") return self.is_training = True self.stop_thread = False self._reset_tracking() self._reset_stats() self.error_message = None # Store total epochs for progress calculation self.current_progress['total_epochs'] = args.get('num_epochs', 100) try: # Build command cmd = build_command_list(args) # Log command self.message_queue.put(f"Starting training with command: {' '.join(cmd)}") # Start process self.process = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, bufsize=1, universal_newlines=True ) # Start thread to process output self.training_thread = threading.Thread( target=self._process_output, args=(self.process,) ) self.training_thread.daemon = True self.training_thread.start() except Exception as e: self.error_message = f"Error starting training: {str(e)}" self.is_training = False self.message_queue.put(f"ERROR: {self.error_message}") def abort_training(self): """Abort the training process.""" if self.process: # Save completed state before termination was_completed = self.current_progress.get('is_completed', False) # Terminate process try: os.killpg(os.getpgid(self.process.pid), signal.SIGTERM) except: self.process.terminate() # Mark as not training self.is_training = False # Fully reset the tracking state self._reset_tracking() self._reset_stats() # Create fresh progress state self.current_progress = { 'stage': 'Aborted', 'progress': '', 'epoch': 0, 'current': 0, 'total': 0, 'total_epochs': 0, 'val_accuracy': 0.0, 'best_accuracy': 0.0, 'best_epoch': -1, 'best_metric_name': '', 'best_metric_value': 0.0, 'progress_detail': '', 'elapsed_time': '', 'remaining_time': '', 'it_per_sec': 0.0, 'grad_step': 0, 'loss': 0.0, 'test_metrics': {}, 'test_progress': 0.0, 'test_results_html': '', 'is_completed': False, 'lines': [] } # Clear process reference self.process = None # Return reset state return { 'progress_status': "Training aborted by user.", 'best_model': "Training aborted by user.", 'test_results': "", 'plot': None } def get_messages(self) -> str: """Get all messages from queue.""" messages = [] while not self.message_queue.empty(): try: messages.append(self.message_queue.get_nowait()) except queue.Empty: break message_text = "\n".join(messages) if self.error_message: message_text += f"\n\nERROR: {self.error_message}" return message_text def get_loss_plot(self): """ Generate a static plot showing training and validation loss. Returns: matplotlib Figure object for display in gr.Plot """ # Return None if insufficient data if not self.epochs or (not self.train_losses and not self.val_losses): return None try: import matplotlib.pyplot as plt import matplotlib # Close any existing figures to prevent memory leaks plt.close('all') # 设置科研风格的matplotlib样式 plt.style.use('seaborn-v0_8-whitegrid') matplotlib.rcParams.update({ 'font.family': ['serif', 'DejaVu Serif'], 'font.size': 12, 'axes.labelsize': 14, 'axes.titlesize': 16, 'xtick.labelsize': 12, 'ytick.labelsize': 12, 'legend.fontsize': 10, 'figure.titlesize': 18, 'figure.figsize': (8, 6), 'figure.dpi': 150, 'axes.grid': True, 'grid.alpha': 0.3, 'axes.axisbelow': True, 'axes.edgecolor': '#888888', 'axes.linewidth': 1.5, 'axes.spines.top': False, 'axes.spines.right': False, }) # 创建图表 fig, ax = plt.subplots(figsize=(8, 6)) # 绘制训练损失 if self.train_losses: valid_indices = [i for i, loss in enumerate(self.train_losses) if loss is not None] if valid_indices: # 确保有有效数据 valid_epochs = [self.epochs[i] for i in valid_indices] valid_losses = [self.train_losses[i] for i in valid_indices] ax.plot(valid_epochs, valid_losses, 'o-', label='Train Loss', color='#1f77b4', linewidth=2, markersize=6, markeredgecolor='white', markeredgewidth=1.5) # 绘制验证损失 if self.val_losses: valid_indices = [i for i, loss in enumerate(self.val_losses) if loss is not None] if valid_indices: # 确保有有效数据 valid_epochs = [self.epochs[i] for i in valid_indices] valid_losses = [self.val_losses[i] for i in valid_indices] ax.plot(valid_epochs, valid_losses, 'o-', label='Validation Loss', color='#ff7f0e', linewidth=2, markersize=6, markeredgecolor='white', markeredgewidth=1.5) # 设置损失图表属性 ax.set_title('Training and Validation Loss', fontweight='bold', pad=15) ax.set_xlabel('Epoch', fontweight='bold') ax.set_ylabel('Loss', fontweight='bold') # 确保有图例数据后再添加图例 handles, labels = ax.get_legend_handles_labels() if handles: ax.legend(loc='upper right', frameon=True, fancybox=True, framealpha=0.9, edgecolor='gray', facecolor='white') # 设置x轴刻度为整数 ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True)) # 如果所有损失值都是正数,则y轴从0开始 if self.train_losses and self.val_losses: all_losses = [l for l in self.train_losses + self.val_losses if l is not None] if all_losses and min(all_losses) >= 0: ax.set_ylim(bottom=0) # 调整布局 plt.tight_layout() # 返回图表 return fig except Exception as e: print(f"Error generating loss plot: {str(e)}") plt.close('all') # Close any open figures in case of error return None def get_metrics_plot(self): """ Generate a static plot showing validation metrics. Returns: matplotlib Figure object for display in gr.Plot """ # Return None if insufficient data if not self.epochs or not self.val_metrics: return None try: import matplotlib.pyplot as plt import matplotlib # Close any existing figures to prevent memory leaks plt.close('all') # 设置科研风格的matplotlib样式 plt.style.use('seaborn-v0_8-whitegrid') matplotlib.rcParams.update({ 'font.family': ['serif', 'DejaVu Serif'], 'font.size': 12, 'axes.labelsize': 14, 'axes.titlesize': 16, 'xtick.labelsize': 12, 'ytick.labelsize': 12, 'legend.fontsize': 10, 'figure.titlesize': 18, 'figure.figsize': (8, 6), 'figure.dpi': 150, 'axes.grid': True, 'grid.alpha': 0.3, 'axes.axisbelow': True, 'axes.edgecolor': '#888888', 'axes.linewidth': 1.5, 'axes.spines.top': False, 'axes.spines.right': False, }) # 创建图表 fig, ax = plt.subplots(figsize=(8, 6)) # 绘制验证指标图表 colors = ['#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] # 检查是否有任何指标有有效数据 has_valid_data = False # 为每个指标绘制一条线 for i, (metric_name, values) in enumerate(self.val_metrics.items()): if values: valid_indices = [i for i, val in enumerate(values) if val is not None] if valid_indices: # 确保有有效数据 has_valid_data = True valid_epochs = [self.epochs[i] for i in valid_indices] valid_values = [values[i] for i in valid_indices] # 确保所有值都不超过1.0 valid_values = [min(val, 1.0) for val in valid_values] # 格式化指标名称:缩写全大写,非缩写首字母大写 formatted_name = metric_name if metric_name.lower() in ['acc', 'f1', 'mcc', 'auroc']: formatted_name = metric_name.upper() else: formatted_name = metric_name.capitalize() ax.plot(valid_epochs, valid_values, 'o-', label=formatted_name, color=colors[i % len(colors)], linewidth=2, markersize=6, markeredgecolor='white', markeredgewidth=1.5) # 如果没有有效数据,返回None if not has_valid_data: plt.close(fig) return None # 设置验证指标图表属性 ax.set_title('Validation Metrics', fontweight='bold', pad=15) ax.set_xlabel('Epoch', fontweight='bold') ax.set_ylabel('Value', fontweight='bold') handles, labels = ax.get_legend_handles_labels() if handles: ax.legend(loc='lower right', frameon=True, fancybox=True, framealpha=0.9, edgecolor='gray', facecolor='white') ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True)) # 严格限制y轴范围在0到1之间 ax.set_ylim(0, 1.0) # # 标记最佳模型位置 # best_epoch = self.current_progress.get('best_epoch', 0) # best_metric_name = self.current_progress.get('best_metric_name', '') # best_metric_value = self.current_progress.get('best_metric_value', 0.0) # # if best_epoch > 0 and best_metric_name in self.val_metrics: # # metric_values = self.val_metrics[best_metric_name] # # if best_epoch <= len(metric_values) and metric_values[best_epoch-1] is not None: # # best_y = metric_values[best_epoch-1] # # ax.scatter([best_epoch], [best_y], color='red', s=120, zorder=5, # # marker='*', edgecolor='white', linewidth=1.5) # # ax.annotate(f'Best: {best_metric_value:.4f}', # # xy=(best_epoch, best_y), # # xytext=(10, -15), # # textcoords='offset points', # # color='red', # # fontsize=12, # # fontweight='bold', # # arrowprops=dict(arrowstyle='->', # # connectionstyle='arc3,rad=.2', # # color='red')) plt.tight_layout() # 返回图表 return fig except Exception as e: print(f"Error generating metrics plot: {str(e)}") plt.close('all') # Close any open figures in case of error return None def get_plot(self): """ Legacy function for compatibility. Returns: None (use get_loss_plot and get_metrics_plot instead) """ return None def get_progress(self) -> Dict[str, Any]: """Return current progress information.""" # Ensure we're returning a deep copy to prevent reference issues progress_copy = self.current_progress.copy() # Ensure all expected keys have default values if missing default_progress = { 'stage': 'Waiting', 'progress': '', 'epoch': 0, 'current': 0, 'total': 0, 'total_epochs': 0, 'val_accuracy': 0.0, 'best_accuracy': 0.0, 'best_epoch': -1, 'best_metric_name': '', 'best_metric_value': 0.0, 'progress_detail': '', 'elapsed_time': '', 'remaining_time': '', 'it_per_sec': 0.0, 'grad_step': 0, 'loss': 0.0, 'test_metrics': {}, 'test_progress': 0.0, 'test_results_html': '', 'lines': [] } # Update with defaults for any missing keys for key, value in default_progress.items(): if key not in progress_copy: progress_copy[key] = value return progress_copy def _process_output_line(self, line: str): """Process training output line for metric tracking.""" try: # 保存每一行输出到progress_info中 if 'lines' not in self.current_progress: self.current_progress['lines'] = [] self.current_progress['lines'].append(line) # 限制保存的行数,避免内存占用过大 max_lines = 1000 # 保留最近的1000行 if len(self.current_progress['lines']) > max_lines: self.current_progress['lines'] = self.current_progress['lines'][-max_lines:] # Always check for test progress if in Testing stage if self.current_progress.get('stage') == 'Testing': if self._process_test_progress(line): return # Check for test phase start if re.search(self.patterns['test_phase_start'], line): self.current_progress['stage'] = 'Testing' # Reset test metrics at the start of test phase self.current_progress['test_metrics'] = {} self.current_progress['test_results_html'] = '' return # Check for epoch header pattern (e.g., "---------- Epoch 1 ----------") epoch_header_match = re.search(self.patterns['epoch_header'], line) if epoch_header_match: new_epoch = int(epoch_header_match.group(1)) # Update current epoch self.current_epoch = new_epoch self.current_progress['epoch'] = new_epoch if self.debug_progress: print(f"Detected epoch header, setting current epoch to: {new_epoch}") return # Detect test results header if re.search(self.patterns['test_header'], line): self.parsing_test_results = True self.test_results = {} # Set stage to 'Testing' when we see the test results header self.current_progress['stage'] = 'Testing' return # Extract the actual content part of the log line if it contains timestamp and INFO log_content = line log_match = re.search(r'\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2} - [a-zA-Z]+ - INFO - (.*)', line) if log_match: log_content = log_match.group(1) if self.parsing_test_results: collected_new_metric = False # 尝试匹配测试损失值 test_loss_match = re.search(self.patterns['test_loss'], log_content) if test_loss_match: loss_value = float(test_loss_match.group(1)) self.test_results['loss'] = loss_value collected_new_metric = True if self.debug_progress: print(f"Matched test loss: {loss_value}") # 特别处理f1指标 test_f1_match = re.search(self.patterns['test_f1'], log_content) if test_f1_match and not test_loss_match: f1_value = float(test_f1_match.group(1)) self.test_results['f1'] = f1_value collected_new_metric = True if self.debug_progress: print(f"Matched test f1: {f1_value}") # 尝试匹配常见指标 if not test_loss_match and not test_f1_match: common_metric_match = re.search(self.patterns['test_common_metrics'], log_content) if common_metric_match: metric_name, metric_value = common_metric_match.groups() metric_name = metric_name.strip().lower() try: value = float(metric_value) self.test_results[metric_name] = value collected_new_metric = True if self.debug_progress: print(f"Matched common test metric: {metric_name} = {value}") except ValueError: if self.debug_progress: print(f"Failed to parse value for common metric {metric_name}: {metric_value}") # 尝试匹配其他测试指标 if not test_loss_match and not test_f1_match and not (locals().get('common_metric_match')): test_metric_match = re.search(self.patterns['test_metric'], log_content) if test_metric_match: metric_name, metric_value = test_metric_match.groups() metric_name = metric_name.strip().lower() try: value = float(metric_value) self.test_results[metric_name] = value collected_new_metric = True if self.debug_progress: print(f"Matched test metric: {metric_name} = {value}") except ValueError: if self.debug_progress: print(f"Failed to parse value for metric {metric_name}: {metric_value}") # 如果收集到新指标,更新显示 if collected_new_metric: self._update_test_results_display() # Determine if we should end test results parsing # Only end parsing when line doesn't start with "Test", is not empty, and we've collected metrics, or if line is empty if ((not log_content.strip().startswith("Test") and len(log_content.strip()) > 0 and self.test_results) or log_content.strip() == ""): # Ensure we've collected at least some metrics before ending parsing if self.test_results: self.parsing_test_results = False # Final update of the display self._update_test_results_display() return # Parse model parameter statistics if "Model Parameters Statistics:" in line: self.current_stats = {} self.parsing_stats = True self.skipped_first_separator = False return if self.parsing_stats: # Handle separator line if "------------------------" in line: # If this is the first separator line, skip it if not self.skipped_first_separator: self.skipped_first_separator = True return # If it's the last separator line, check if we have enough information required_keys = ["adapter_total", "adapter_trainable", "pretrain_total", "pretrain_trainable", "combined_total", "combined_trainable", "trainable_percentage"] missing_keys = [key for key in required_keys if key not in self.current_stats] if not missing_keys: # Put statistics in queue self.stats_queue.put(self.current_stats.copy()) # Update cache self.last_stats.update(self.current_stats) self.parsing_stats = False self.current_model = None self.skipped_first_separator = False return # If first separator not yet skipped, don't process other lines if not self.skipped_first_separator: return # Match model name sections if "Adapter Model:" in line: self.current_model = "adapter" return elif "Pre-trained Model:" in line: self.current_model = "pretrain" return elif "Combined:" in line: self.current_model = "combined" return # Parse parameter information param_match = re.search(self.patterns['model_param'], line) if param_match and self.current_model: stat_name, stat_value = param_match.groups() stat_name = stat_name.strip().lower() if "total parameters" in stat_name: self.current_stats[f"{self.current_model}_total"] = stat_value elif "trainable parameters" in stat_name: self.current_stats[f"{self.current_model}_trainable"] = stat_value elif "trainable percentage" in stat_name and self.current_model == "combined": self.current_stats["trainable_percentage"] = stat_value return # Process training progress train_progress_match = re.search(self.progress_patterns['train'], line) if train_progress_match: percentage, current, total, elapsed, remaining, it_per_sec = train_progress_match.groups()[:6] grad_step = train_progress_match.group(7) if len(train_progress_match.groups()) >= 7 and train_progress_match.group(7) else "0" loss = train_progress_match.group(8) if len(train_progress_match.groups()) >= 8 and train_progress_match.group(8) else "0.0" # Update progress information self.current_progress['stage'] = 'Training' self.current_progress['current'] = int(current) self.current_progress['total'] = int(total) self.current_progress['progress_detail'] = f"{current}/{total}[{elapsed}<{remaining},{it_per_sec}it/s" if grad_step: self.current_progress['progress_detail'] += f",grad_step={grad_step}" self.current_progress['progress_detail'] += f",train_loss={loss}]" self.current_progress['elapsed_time'] = elapsed self.current_progress['remaining_time'] = remaining self.current_progress['it_per_sec'] = float(it_per_sec) if grad_step: self.current_progress['grad_step'] = int(grad_step) if loss and float(loss) > 0: self.current_progress['loss'] = float(loss) return # Validation or Testing progress - consolidated since they use same tqdm format valid_or_test_match = re.search(self.progress_patterns['valid_or_test'], line) if valid_or_test_match: percentage, current, total, elapsed, remaining, it_per_sec = valid_or_test_match.groups() # Determine stage based on current context and line content # If line contains 'Test' or we've already detected test phase, set to 'Testing' if 'Test' in line or self.current_progress.get('stage') == 'Testing' or self.parsing_test_results: self.current_progress['stage'] = 'Testing' else: self.current_progress['stage'] = 'Validation' self.current_progress['current'] = int(current) self.current_progress['total'] = int(total) self.current_progress['progress_detail'] = f"{current}/{total}[{elapsed}<{remaining},{it_per_sec}it/s]" self.current_progress['elapsed_time'] = elapsed self.current_progress['remaining_time'] = remaining self.current_progress['it_per_sec'] = float(it_per_sec) return # Parse training loss train_match = re.search(self.patterns['train'], line) if train_match: epoch, loss = train_match.groups() current_epoch = int(epoch) self.current_progress['epoch'] = current_epoch self.current_progress['loss'] = float(loss) self.current_epoch = current_epoch # Add new epoch to epochs list if current_epoch not in self.epochs: self.epochs.append(current_epoch) self.train_losses.append(float(loss)) else: # Update existing epoch idx = self.epochs.index(current_epoch) self.train_losses[idx] = float(loss) return # Parse validation loss val_match = re.search(self.patterns['val'], line) if val_match: epoch, loss = val_match.groups() current_epoch = int(epoch) # Ensure current epoch exists if current_epoch not in self.epochs: self.epochs.append(current_epoch) if len(self.train_losses) < len(self.epochs): self.train_losses.append(None) idx = self.epochs.index(current_epoch) # Ensure val_losses list matches epochs list length while len(self.val_losses) < len(self.epochs): self.val_losses.append(None) # Update val_losses at correct position self.val_losses[idx] = float(loss) # Also update val_metrics dictionary if 'loss' not in self.val_metrics: self.val_metrics['loss'] = [] # Ensure val_metrics['loss'] matches epochs length while len(self.val_metrics['loss']) < len(self.epochs): self.val_metrics['loss'].append(None) # Update val_metrics['loss'] at correct position self.val_metrics['loss'][idx] = float(loss) return # Parse validation metrics val_metric_match = re.search(self.patterns['val_metric'], line) if val_metric_match: epoch, metric_name, metric_value = val_metric_match.groups() current_epoch = int(epoch) metric_name = metric_name.strip().lower() # Handle different possible metrics if metric_name == 'accuracy' or metric_name == 'acc': self.current_progress['val_accuracy'] = float(metric_value) # Ensure current epoch exists if current_epoch not in self.epochs: self.epochs.append(current_epoch) if len(self.train_losses) < len(self.epochs): self.train_losses.append(None) # Add to corresponding metric list if metric_name not in self.val_metrics: self.val_metrics[metric_name] = [] # Ensure list length matches epochs while len(self.val_metrics[metric_name]) < len(self.epochs): self.val_metrics[metric_name].append(None) idx = self.epochs.index(current_epoch) self.val_metrics[metric_name][idx] = float(metric_value) return # 首先检查原始行是否包含"Saving model with best val" if "Saving model with best val" in line: # 直接从原始行提取信息,避免依赖正则表达式 try: # 尝试直接解析行内容 parts = line.split("Saving model with best val ")[1].split(": ") if len(parts) == 2: metric_name = parts[0].strip().lower() metric_value = float(parts[1].strip()) # 更新Best Performance信息 self.current_progress['best_metric_name'] = metric_name self.current_progress['best_metric_value'] = metric_value self.current_progress['best_epoch'] = self.current_epoch # 如果是accuracy指标,同时更新best_accuracy if metric_name == 'accuracy': self.current_progress['best_accuracy'] = metric_value # 记录调试信息 print(f"Best model updated - Metric: {metric_name}, Value: {metric_value}, Epoch: {self.current_epoch}") # 将最佳模型信息添加到消息队列,确保UI能够显示 best_model_msg = f"Best model saved at epoch {self.current_epoch} with {metric_name}: {metric_value:.4f}" self.message_queue.put(best_model_msg) return except Exception as e: print(f"Error parsing best model info: {e}, line: {line}") # 如果直接解析失败,尝试使用正则表达式 # Match best model save info: e.g., "Saving model with best val accuracy: 0.9088" best_save_match = re.search(self.patterns['best_save'], log_content) if best_save_match: metric_name, metric_value = best_save_match.groups() metric_name = metric_name.strip().lower() metric_value = float(metric_value) # 更新Best Performance信息 self.current_progress['best_metric_name'] = metric_name self.current_progress['best_metric_value'] = metric_value self.current_progress['best_epoch'] = self.current_epoch # 如果是accuracy指标,同时更新best_accuracy if metric_name == 'accuracy': self.current_progress['best_accuracy'] = metric_value # 记录调试信息 print(f"Best model updated (regex) - Metric: {metric_name}, Value: {metric_value}, Epoch: {self.current_epoch}") # 将最佳模型信息添加到消息队列,确保UI能够显示 best_model_msg = f"Best model saved at epoch {self.current_epoch} with {metric_name}: {metric_value:.4f}" self.message_queue.put(best_model_msg) return # 检查进程是否已经结束 if self.process and self.process.poll() is not None: self.is_training = False self.current_progress['is_completed'] = True print("Training process has completed. Setting is_completed flag.") except Exception as e: # 记录错误信息,同时也保存到输出行中 error_msg = f"Error parsing line: {str(e)}" self.error_message = error_msg if 'lines' not in self.current_progress: self.current_progress['lines'] = [] self.current_progress['lines'].append(error_msg) if self.debug_progress: print(error_msg) print(f"Line content: {line}") def _reset_tracking(self): """重置所有跟踪状态""" # 重置指标跟踪 self.train_losses = [] self.val_losses = [] self.val_metrics = {} self.epochs = [] self.current_epoch = 0 # 重置测试结果 self.test_results = {} self.parsing_test_results = False self.test_results_html = "" # Force complete reset by creating a new dictionary instead of modifying existing one # This ensures no old keys remain in the dictionary self.current_progress = { 'stage': 'Waiting', 'progress': '', 'epoch': 0, 'current': 0, 'total': 0, # Set to 0 initially to avoid showing progress 'total_epochs': 0, 'val_accuracy': 0.0, 'best_accuracy': 0.0, 'best_epoch': -1, # Set to -1 to indicate no best model 'best_metric_name': '', 'best_metric_value': 0.0, 'progress_detail': '', 'elapsed_time': '', 'remaining_time': '', 'it_per_sec': 0.0, 'grad_step': 0, 'loss': 0.0, 'test_metrics': {}, 'test_progress': 0.0, 'test_results_html': '', 'lines': [] # 添加lines字段来存储输出行 } # 重置统计信息 self.current_stats = {} self.parsing_stats = False self.current_model = None self.skipped_first_separator = False # 重置缓存的统计信息 self.last_stats = {} # 重置错误信息 if hasattr(self, 'error_message'): self.error_message = None def get_stats(self) -> Dict: """Get collected statistics.""" # Save last retrieved statistics to avoid emptying queue every time if not hasattr(self, 'last_stats'): self.last_stats = {} try: # Check if there's new data in the queue if not self.stats_queue.empty(): # Get the latest statistics data while not self.stats_queue.empty(): stat = self.stats_queue.get_nowait() self.last_stats.update(stat) except queue.Empty: pass except Exception as e: print(f"Error getting statistics data: {str(e)}") return self.last_stats def _reset_stats(self): """Reset statistics tracking.""" # Clear statistics queue while not self.stats_queue.empty(): try: self.stats_queue.get_nowait() except queue.Empty: break # Reset current statistics with new dictionaries self.current_stats = {} self.parsing_stats = False self.current_model = None self.skipped_first_separator = False # Reset flag # Reset cached statistics self.last_stats = {} # Reset stats property explicitly self.stats = {} # Reset training and validation metrics self._reset_tracking() # Reset progress info self.current_progress = { 'stage': 'Waiting', 'progress': '', 'epoch': 0, 'current': 0, 'total': 100, 'total_epochs': 0, # Ensure total_epochs is reset 'val_accuracy': 0.0, 'best_accuracy': 0.0, 'best_epoch': 0, 'best_metric_name': 'accuracy', 'best_metric_value': 0.0, 'progress_detail': '', 'elapsed_time': '', 'remaining_time': '', 'it_per_sec': 0.0, 'grad_step': 0, 'loss': 0.0, 'test_metrics': {}, 'test_progress': 0.0, 'test_results_html': '', 'lines': [] # 添加lines字段来存储输出行 } def _update_test_results_display(self): """Update the display of test results, in both HTML and text formats.""" if not self.test_results: return # Count number of metrics metrics_count = len(self.test_results) # Create a more beautiful HTML table with summary information html_content = f"""

Test Results

{metrics_count} metrics found

""" # Sort by priority and alphabetically to ensure important metrics are displayed first priority_metrics = ['loss', 'accuracy', 'f1', 'precision', 'recall', 'auroc', 'mcc'] # Build priority sorting key def get_priority(item): name = item[0] if name in priority_metrics: return priority_metrics.index(name) return len(priority_metrics) # Sort by priority sorted_metrics = sorted(self.test_results.items(), key=get_priority) # Add a row for each metric, using alternating row colors for i, (metric_name, metric_value) in enumerate(sorted_metrics): row_style = 'background-color: #f9f9f9;' if i % 2 == 0 else '' # Use bold for priority metrics is_priority = metric_name in priority_metrics name_style = 'font-weight: bold;' if is_priority else '' # 转换指标名称:缩写用大写,非缩写首字母大写 display_name = metric_name if metric_name.lower() in ['f1', 'mcc', 'auroc']: display_name = metric_name.upper() else: display_name = metric_name.capitalize() html_content += f""" """ html_content += """
Metric Value
{display_name} {metric_value:.4f}

Test completed at: """ + time.strftime("%Y-%m-%d %H:%M:%S") + """

""" # Save to current_progress for UI access self.current_progress['test_metrics'] = self.test_results.copy() self.current_progress['test_results_html'] = html_content # Generate text representation for logging text_results = "\nTest Results:\n" + "-" * 30 + "\n" # Display in same order as HTML for metric_name, metric_value in sorted_metrics: # 转换指标名称:缩写用大写,非缩写首字母大写 display_name = metric_name if metric_name.lower() in ['f1', 'mcc', 'auroc']: display_name = metric_name.upper() else: display_name = metric_name.capitalize() text_results += f"{display_name.ljust(15)}: {metric_value:.4f}\n" text_results += "-" * 30 text_results += f"\nTotal {metrics_count} metrics" # Add text results to message queue self.message_queue.put(text_results) # Generate CSV content for download csv_content = "Metric,Value\n" for metric_name, metric_value in sorted_metrics: # 转换指标名称:缩写用大写,非缩写首字母大写 display_name = metric_name if metric_name.lower() in ['f1', 'mcc', 'auroc']: display_name = metric_name.upper() else: display_name = metric_name.capitalize() csv_content += f"{display_name},{metric_value:.6f}\n" self.current_progress['test_results_csv'] = csv_content def _process_test_progress(self, line: str): """Process test progress from output lines during testing phase.""" # Parse intermediate test results if available test_metric_interim_match = re.search(r'Batch (\d+)/(\d+): ([a-zA-Z_\-]+) = ([\d.]+)', line) if test_metric_interim_match: batch, total_batches, metric_name, metric_value = test_metric_interim_match.groups() progress = int(batch) / int(total_batches) * 100 self.current_progress['test_progress'] = progress # Update test metrics with interim values if 'interim_metrics' not in self.current_progress: self.current_progress['interim_metrics'] = {} self.current_progress['interim_metrics'][metric_name] = float(metric_value) return True return False def check_process_status(self): """Check if the training process has completed.""" if self.process and self.process.poll() is not None: self.is_training = False # Check for normal vs error termination based on return code if self.process.returncode == 0: # Normal termination self.current_progress['is_completed'] = True print("Training process has completed successfully. Setting is_completed flag.") else: # Error termination - ensure UI doesn't show "completed" self.current_progress['is_completed'] = False # Explicitly mark the stage as Error for proper UI handling self.current_progress['stage'] = 'Error' # Log the error more prominently print(f"Training process terminated with error code {self.process.returncode}. Setting stage to 'Error'.") # Clear the process reference self.process = None return True return False