### Dataset ### Protein Language Model (PLM) # facebook: esm2_t30_150M_UR50D esm2_t33_650M_UR50D esm2_t36_3B_UR50D # rostLab: prot_bert prot_bert_bfd prot_t5_xl_uniref50 prot_t5_xl_bfd ankh-base ankh-large # ESM model target_modules name: query key value # Bert_base(prot_bert) model target_modules name: query key value # T5_base(ankh, t5) model target_modules name: q k v # if need to use HF mirror export HF_ENDPOINT=https://hf-mirror.com dataset=GO_BP pdb_type=ESMFold pooling_head=mean plm_source=facebook plm_model=esm2_t33_650M_UR50D lr=5e-4 training_method=plm-adalora python src/train.py \ --plm_model $plm_source/$plm_model \ --dataset_config data/$dataset/"$dataset"_"$pdb_type"_HF.json \ --learning_rate $lr \ --gradient_accumulation_steps 8 \ --num_epochs 100 \ --batch_token 12000 \ --patience 10 \ --output_dir debug/$dataset/$plm_model \ --output_model_name "$training_method"_"$pdb_type"_lr"$lr"_bt12k_ga8.pt \ --training_method $training_method \ --lora_target_modules query key value