Spaces:
Runtime error
Runtime error
File size: 52,607 Bytes
8918ac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 |
import threading
import queue
import subprocess
import matplotlib.pyplot as plt
import numpy as np
import os
import signal
import re
import time
from typing import Dict, Any, Optional
from .command import build_command_list
import logging
import json
import io
import base64
class TrainingMonitor:
def __init__(self):
"""Initialize training monitor."""
# Queues for thread-safe data exchange
self.stats_queue = queue.Queue()
self.message_queue = queue.Queue()
self.is_training = False
self.stop_thread = False
self.process = None
self.training_thread = None
self.debug_progress = False # Enable for debug info
# Metrics tracking
self._reset_tracking()
# Progress tracking
self.current_progress = {
'stage': 'Waiting', # Training/Validation/Testing
'progress': '', # Progress bar text
'epoch': 0,
'current': 0,
'total': 100,
'total_epochs': 0, # Add total_epochs field, for storing total training rounds
'val_accuracy': 0.0,
'best_accuracy': 0.0,
'best_epoch': 0,
'best_metric_name': 'accuracy', # Name of the best metric
'best_metric_value': 0.0, # Value of the best metric
'progress_detail': '', # Detailed progress information
'elapsed_time': '', # Elapsed time
'remaining_time': '', # Remaining time
'it_per_sec': 0.0, # Iterations per second
'grad_step': 0, # Gradient steps
'loss': 0.0, # Loss value
'test_metrics': {}, # Add test metrics container
'test_progress': 0.0, # Test progress percentage
'test_results_html': '', # HTML formatted test results
'lines': [] # 添加lines字段来存储输出行
}
self.error_message = None
self.skip_output_patterns = [
r"Model Parameters Statistics:",
r"Dataset Statistics:",
r"Sample \d+ data points from train dataset:"
]
# Simplified regex patterns
self.patterns = {
# Basic training log patterns
'train': r'Epoch (\d+) Train Loss: ([\d.]+)',
'val': r'Epoch (\d+) Val Loss: ([\d.]+)',
'val_metric': r'Epoch (\d+) Val ([a-zA-Z_\-]+(?:\s[a-zA-Z_\-]+)*): ([\d.]+)',
'epoch_header': r'---------- Epoch (\d+) ----------',
'best_save': r'Saving model with best val ([a-zA-Z_\-]+(?:\s[a-zA-Z_\-]+)*): ([\d.]+)',
# Test result patterns - improved to match log format exactly
'test_header': r'Test Results:',
'test_phase_start': r'---------- Starting Test Phase ----------',
# 修改测试指标模式,使其更加通用
'test_metric': r'Test\s+([a-zA-Z0-9_\-]+):\s+([\d.]+)',
# 添加特定的f1指标模式
'test_f1': r'Test\s+f1:\s+([\d.]+)',
# 其他常见指标模式
'test_common_metrics': r'Test\s+((?:accuracy|precision|recall|auroc|mcc)):\s*([\d.]+)',
# 特定的loss模式
'test_loss': r'Test\s+Loss:\s*([\d.]+)',
# 替代格式模式
'test_alt_format': r'([a-zA-Z0-9_\-]+(?:\s[a-zA-Z0-9_\-]+)*)\s+on\s+test:\s*([\d.]+)',
# Model parameter statistics
'model_param': r'([A-Za-z\s]+):\s*([\d,.]+[KM]?)',
}
# Progress bar patterns - Updated to handle both Validating and Testing phases
self.progress_patterns = {
'train': r'Training:\s*(\d+)%\|[^|]*\|\s*(\d+)/(\d+)\s*\[([\d:]+)<([\d:]+),\s*([\d.]+)it/s(?:,\s*grad_step=(\d+),\s*train_loss=([\d.]+))?\]',
# Combined pattern for both Validating and Testing since they use same tqdm format
'valid_or_test': r'(?:Validating|Valid|Testing|Test):\s*(\d+)%\|[^|]*\|\s*(\d+)/(\d+)\s*\[([\d:]+)<([\d:]+),\s*([\d.]+)it/s(?:[^\]]*)\]',
}
# Test results storage
self.test_results = {}
self.parsing_test_results = False
self.test_results_table = None
self.test_results_html = None
def _should_skip_line(self, line: str) -> bool:
"""Check if the line should be skipped from output."""
for pattern in self.skip_output_patterns:
if re.search(pattern, line):
return True
return False
def _process_output(self, process):
"""Process output from training process in real-time."""
while True:
if self.stop_thread:
break
output = process.stdout.readline()
if output == '' and process.poll() is not None:
break
if output:
line = output.strip()
if not self._should_skip_line(line):
self.message_queue.put(line)
self._process_output_line(line)
process.stdout.close()
def start_training(self, args: Dict[str, Any]):
"""Start training process."""
if self.is_training:
self.message_queue.put("Training already in progress")
return
self.is_training = True
self.stop_thread = False
self._reset_tracking()
self._reset_stats()
self.error_message = None
# Store total epochs for progress calculation
self.current_progress['total_epochs'] = args.get('num_epochs', 100)
try:
# Build command
cmd = build_command_list(args)
# Log command
self.message_queue.put(f"Starting training with command: {' '.join(cmd)}")
# Start process
self.process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
universal_newlines=True
)
# Start thread to process output
self.training_thread = threading.Thread(
target=self._process_output,
args=(self.process,)
)
self.training_thread.daemon = True
self.training_thread.start()
except Exception as e:
self.error_message = f"Error starting training: {str(e)}"
self.is_training = False
self.message_queue.put(f"ERROR: {self.error_message}")
def abort_training(self):
"""Abort the training process."""
if self.process:
# Save completed state before termination
was_completed = self.current_progress.get('is_completed', False)
# Terminate process
try:
os.killpg(os.getpgid(self.process.pid), signal.SIGTERM)
except:
self.process.terminate()
# Mark as not training
self.is_training = False
# Fully reset the tracking state
self._reset_tracking()
self._reset_stats()
# Create fresh progress state
self.current_progress = {
'stage': 'Aborted',
'progress': '',
'epoch': 0,
'current': 0,
'total': 0,
'total_epochs': 0,
'val_accuracy': 0.0,
'best_accuracy': 0.0,
'best_epoch': -1,
'best_metric_name': '',
'best_metric_value': 0.0,
'progress_detail': '',
'elapsed_time': '',
'remaining_time': '',
'it_per_sec': 0.0,
'grad_step': 0,
'loss': 0.0,
'test_metrics': {},
'test_progress': 0.0,
'test_results_html': '',
'is_completed': False,
'lines': []
}
# Clear process reference
self.process = None
# Return reset state
return {
'progress_status': "Training aborted by user.",
'best_model': "Training aborted by user.",
'test_results': "",
'plot': None
}
def get_messages(self) -> str:
"""Get all messages from queue."""
messages = []
while not self.message_queue.empty():
try:
messages.append(self.message_queue.get_nowait())
except queue.Empty:
break
message_text = "\n".join(messages)
if self.error_message:
message_text += f"\n\nERROR: {self.error_message}"
return message_text
def get_loss_plot(self):
"""
Generate a static plot showing training and validation loss.
Returns:
matplotlib Figure object for display in gr.Plot
"""
# Return None if insufficient data
if not self.epochs or (not self.train_losses and not self.val_losses):
return None
try:
import matplotlib.pyplot as plt
import matplotlib
# Close any existing figures to prevent memory leaks
plt.close('all')
# 设置科研风格的matplotlib样式
plt.style.use('seaborn-v0_8-whitegrid')
matplotlib.rcParams.update({
'font.family': ['serif', 'DejaVu Serif'],
'font.size': 12,
'axes.labelsize': 14,
'axes.titlesize': 16,
'xtick.labelsize': 12,
'ytick.labelsize': 12,
'legend.fontsize': 10,
'figure.titlesize': 18,
'figure.figsize': (8, 6),
'figure.dpi': 150,
'axes.grid': True,
'grid.alpha': 0.3,
'axes.axisbelow': True,
'axes.edgecolor': '#888888',
'axes.linewidth': 1.5,
'axes.spines.top': False,
'axes.spines.right': False,
})
# 创建图表
fig, ax = plt.subplots(figsize=(8, 6))
# 绘制训练损失
if self.train_losses:
valid_indices = [i for i, loss in enumerate(self.train_losses) if loss is not None]
if valid_indices: # 确保有有效数据
valid_epochs = [self.epochs[i] for i in valid_indices]
valid_losses = [self.train_losses[i] for i in valid_indices]
ax.plot(valid_epochs, valid_losses, 'o-', label='Train Loss',
color='#1f77b4', linewidth=2, markersize=6, markeredgecolor='white',
markeredgewidth=1.5)
# 绘制验证损失
if self.val_losses:
valid_indices = [i for i, loss in enumerate(self.val_losses) if loss is not None]
if valid_indices: # 确保有有效数据
valid_epochs = [self.epochs[i] for i in valid_indices]
valid_losses = [self.val_losses[i] for i in valid_indices]
ax.plot(valid_epochs, valid_losses, 'o-', label='Validation Loss',
color='#ff7f0e', linewidth=2, markersize=6, markeredgecolor='white',
markeredgewidth=1.5)
# 设置损失图表属性
ax.set_title('Training and Validation Loss', fontweight='bold', pad=15)
ax.set_xlabel('Epoch', fontweight='bold')
ax.set_ylabel('Loss', fontweight='bold')
# 确保有图例数据后再添加图例
handles, labels = ax.get_legend_handles_labels()
if handles:
ax.legend(loc='upper right', frameon=True, fancybox=True,
framealpha=0.9, edgecolor='gray', facecolor='white')
# 设置x轴刻度为整数
ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True))
# 如果所有损失值都是正数,则y轴从0开始
if self.train_losses and self.val_losses:
all_losses = [l for l in self.train_losses + self.val_losses if l is not None]
if all_losses and min(all_losses) >= 0:
ax.set_ylim(bottom=0)
# 调整布局
plt.tight_layout()
# 返回图表
return fig
except Exception as e:
print(f"Error generating loss plot: {str(e)}")
plt.close('all') # Close any open figures in case of error
return None
def get_metrics_plot(self):
"""
Generate a static plot showing validation metrics.
Returns:
matplotlib Figure object for display in gr.Plot
"""
# Return None if insufficient data
if not self.epochs or not self.val_metrics:
return None
try:
import matplotlib.pyplot as plt
import matplotlib
# Close any existing figures to prevent memory leaks
plt.close('all')
# 设置科研风格的matplotlib样式
plt.style.use('seaborn-v0_8-whitegrid')
matplotlib.rcParams.update({
'font.family': ['serif', 'DejaVu Serif'],
'font.size': 12,
'axes.labelsize': 14,
'axes.titlesize': 16,
'xtick.labelsize': 12,
'ytick.labelsize': 12,
'legend.fontsize': 10,
'figure.titlesize': 18,
'figure.figsize': (8, 6),
'figure.dpi': 150,
'axes.grid': True,
'grid.alpha': 0.3,
'axes.axisbelow': True,
'axes.edgecolor': '#888888',
'axes.linewidth': 1.5,
'axes.spines.top': False,
'axes.spines.right': False,
})
# 创建图表
fig, ax = plt.subplots(figsize=(8, 6))
# 绘制验证指标图表
colors = ['#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
# 检查是否有任何指标有有效数据
has_valid_data = False
# 为每个指标绘制一条线
for i, (metric_name, values) in enumerate(self.val_metrics.items()):
if values:
valid_indices = [i for i, val in enumerate(values) if val is not None]
if valid_indices: # 确保有有效数据
has_valid_data = True
valid_epochs = [self.epochs[i] for i in valid_indices]
valid_values = [values[i] for i in valid_indices]
# 确保所有值都不超过1.0
valid_values = [min(val, 1.0) for val in valid_values]
# 格式化指标名称:缩写全大写,非缩写首字母大写
formatted_name = metric_name
if metric_name.lower() in ['acc', 'f1', 'mcc', 'auroc']:
formatted_name = metric_name.upper()
else:
formatted_name = metric_name.capitalize()
ax.plot(valid_epochs, valid_values, 'o-',
label=formatted_name,
color=colors[i % len(colors)],
linewidth=2,
markersize=6,
markeredgecolor='white',
markeredgewidth=1.5)
# 如果没有有效数据,返回None
if not has_valid_data:
plt.close(fig)
return None
# 设置验证指标图表属性
ax.set_title('Validation Metrics', fontweight='bold', pad=15)
ax.set_xlabel('Epoch', fontweight='bold')
ax.set_ylabel('Value', fontweight='bold')
handles, labels = ax.get_legend_handles_labels()
if handles:
ax.legend(loc='lower right', frameon=True, fancybox=True,
framealpha=0.9, edgecolor='gray', facecolor='white')
ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True))
# 严格限制y轴范围在0到1之间
ax.set_ylim(0, 1.0)
# # 标记最佳模型位置
# best_epoch = self.current_progress.get('best_epoch', 0)
# best_metric_name = self.current_progress.get('best_metric_name', '')
# best_metric_value = self.current_progress.get('best_metric_value', 0.0)
# # if best_epoch > 0 and best_metric_name in self.val_metrics:
# # metric_values = self.val_metrics[best_metric_name]
# # if best_epoch <= len(metric_values) and metric_values[best_epoch-1] is not None:
# # best_y = metric_values[best_epoch-1]
# # ax.scatter([best_epoch], [best_y], color='red', s=120, zorder=5,
# # marker='*', edgecolor='white', linewidth=1.5)
# # ax.annotate(f'Best: {best_metric_value:.4f}',
# # xy=(best_epoch, best_y),
# # xytext=(10, -15),
# # textcoords='offset points',
# # color='red',
# # fontsize=12,
# # fontweight='bold',
# # arrowprops=dict(arrowstyle='->',
# # connectionstyle='arc3,rad=.2',
# # color='red'))
plt.tight_layout()
# 返回图表
return fig
except Exception as e:
print(f"Error generating metrics plot: {str(e)}")
plt.close('all') # Close any open figures in case of error
return None
def get_plot(self):
"""
Legacy function for compatibility.
Returns:
None (use get_loss_plot and get_metrics_plot instead)
"""
return None
def get_progress(self) -> Dict[str, Any]:
"""Return current progress information."""
# Ensure we're returning a deep copy to prevent reference issues
progress_copy = self.current_progress.copy()
# Ensure all expected keys have default values if missing
default_progress = {
'stage': 'Waiting',
'progress': '',
'epoch': 0,
'current': 0,
'total': 0,
'total_epochs': 0,
'val_accuracy': 0.0,
'best_accuracy': 0.0,
'best_epoch': -1,
'best_metric_name': '',
'best_metric_value': 0.0,
'progress_detail': '',
'elapsed_time': '',
'remaining_time': '',
'it_per_sec': 0.0,
'grad_step': 0,
'loss': 0.0,
'test_metrics': {},
'test_progress': 0.0,
'test_results_html': '',
'lines': []
}
# Update with defaults for any missing keys
for key, value in default_progress.items():
if key not in progress_copy:
progress_copy[key] = value
return progress_copy
def _process_output_line(self, line: str):
"""Process training output line for metric tracking."""
try:
# 保存每一行输出到progress_info中
if 'lines' not in self.current_progress:
self.current_progress['lines'] = []
self.current_progress['lines'].append(line)
# 限制保存的行数,避免内存占用过大
max_lines = 1000 # 保留最近的1000行
if len(self.current_progress['lines']) > max_lines:
self.current_progress['lines'] = self.current_progress['lines'][-max_lines:]
# Always check for test progress if in Testing stage
if self.current_progress.get('stage') == 'Testing':
if self._process_test_progress(line):
return
# Check for test phase start
if re.search(self.patterns['test_phase_start'], line):
self.current_progress['stage'] = 'Testing'
# Reset test metrics at the start of test phase
self.current_progress['test_metrics'] = {}
self.current_progress['test_results_html'] = ''
return
# Check for epoch header pattern (e.g., "---------- Epoch 1 ----------")
epoch_header_match = re.search(self.patterns['epoch_header'], line)
if epoch_header_match:
new_epoch = int(epoch_header_match.group(1))
# Update current epoch
self.current_epoch = new_epoch
self.current_progress['epoch'] = new_epoch
if self.debug_progress:
print(f"Detected epoch header, setting current epoch to: {new_epoch}")
return
# Detect test results header
if re.search(self.patterns['test_header'], line):
self.parsing_test_results = True
self.test_results = {}
# Set stage to 'Testing' when we see the test results header
self.current_progress['stage'] = 'Testing'
return
# Extract the actual content part of the log line if it contains timestamp and INFO
log_content = line
log_match = re.search(r'\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2} - [a-zA-Z]+ - INFO - (.*)', line)
if log_match:
log_content = log_match.group(1)
if self.parsing_test_results:
collected_new_metric = False
# 尝试匹配测试损失值
test_loss_match = re.search(self.patterns['test_loss'], log_content)
if test_loss_match:
loss_value = float(test_loss_match.group(1))
self.test_results['loss'] = loss_value
collected_new_metric = True
if self.debug_progress:
print(f"Matched test loss: {loss_value}")
# 特别处理f1指标
test_f1_match = re.search(self.patterns['test_f1'], log_content)
if test_f1_match and not test_loss_match:
f1_value = float(test_f1_match.group(1))
self.test_results['f1'] = f1_value
collected_new_metric = True
if self.debug_progress:
print(f"Matched test f1: {f1_value}")
# 尝试匹配常见指标
if not test_loss_match and not test_f1_match:
common_metric_match = re.search(self.patterns['test_common_metrics'], log_content)
if common_metric_match:
metric_name, metric_value = common_metric_match.groups()
metric_name = metric_name.strip().lower()
try:
value = float(metric_value)
self.test_results[metric_name] = value
collected_new_metric = True
if self.debug_progress:
print(f"Matched common test metric: {metric_name} = {value}")
except ValueError:
if self.debug_progress:
print(f"Failed to parse value for common metric {metric_name}: {metric_value}")
# 尝试匹配其他测试指标
if not test_loss_match and not test_f1_match and not (locals().get('common_metric_match')):
test_metric_match = re.search(self.patterns['test_metric'], log_content)
if test_metric_match:
metric_name, metric_value = test_metric_match.groups()
metric_name = metric_name.strip().lower()
try:
value = float(metric_value)
self.test_results[metric_name] = value
collected_new_metric = True
if self.debug_progress:
print(f"Matched test metric: {metric_name} = {value}")
except ValueError:
if self.debug_progress:
print(f"Failed to parse value for metric {metric_name}: {metric_value}")
# 如果收集到新指标,更新显示
if collected_new_metric:
self._update_test_results_display()
# Determine if we should end test results parsing
# Only end parsing when line doesn't start with "Test", is not empty, and we've collected metrics, or if line is empty
if ((not log_content.strip().startswith("Test") and
len(log_content.strip()) > 0 and
self.test_results) or
log_content.strip() == ""):
# Ensure we've collected at least some metrics before ending parsing
if self.test_results:
self.parsing_test_results = False
# Final update of the display
self._update_test_results_display()
return
# Parse model parameter statistics
if "Model Parameters Statistics:" in line:
self.current_stats = {}
self.parsing_stats = True
self.skipped_first_separator = False
return
if self.parsing_stats:
# Handle separator line
if "------------------------" in line:
# If this is the first separator line, skip it
if not self.skipped_first_separator:
self.skipped_first_separator = True
return
# If it's the last separator line, check if we have enough information
required_keys = ["adapter_total", "adapter_trainable",
"pretrain_total", "pretrain_trainable",
"combined_total", "combined_trainable",
"trainable_percentage"]
missing_keys = [key for key in required_keys if key not in self.current_stats]
if not missing_keys:
# Put statistics in queue
self.stats_queue.put(self.current_stats.copy())
# Update cache
self.last_stats.update(self.current_stats)
self.parsing_stats = False
self.current_model = None
self.skipped_first_separator = False
return
# If first separator not yet skipped, don't process other lines
if not self.skipped_first_separator:
return
# Match model name sections
if "Adapter Model:" in line:
self.current_model = "adapter"
return
elif "Pre-trained Model:" in line:
self.current_model = "pretrain"
return
elif "Combined:" in line:
self.current_model = "combined"
return
# Parse parameter information
param_match = re.search(self.patterns['model_param'], line)
if param_match and self.current_model:
stat_name, stat_value = param_match.groups()
stat_name = stat_name.strip().lower()
if "total parameters" in stat_name:
self.current_stats[f"{self.current_model}_total"] = stat_value
elif "trainable parameters" in stat_name:
self.current_stats[f"{self.current_model}_trainable"] = stat_value
elif "trainable percentage" in stat_name and self.current_model == "combined":
self.current_stats["trainable_percentage"] = stat_value
return
# Process training progress
train_progress_match = re.search(self.progress_patterns['train'], line)
if train_progress_match:
percentage, current, total, elapsed, remaining, it_per_sec = train_progress_match.groups()[:6]
grad_step = train_progress_match.group(7) if len(train_progress_match.groups()) >= 7 and train_progress_match.group(7) else "0"
loss = train_progress_match.group(8) if len(train_progress_match.groups()) >= 8 and train_progress_match.group(8) else "0.0"
# Update progress information
self.current_progress['stage'] = 'Training'
self.current_progress['current'] = int(current)
self.current_progress['total'] = int(total)
self.current_progress['progress_detail'] = f"{current}/{total}[{elapsed}<{remaining},{it_per_sec}it/s"
if grad_step:
self.current_progress['progress_detail'] += f",grad_step={grad_step}"
self.current_progress['progress_detail'] += f",train_loss={loss}]"
self.current_progress['elapsed_time'] = elapsed
self.current_progress['remaining_time'] = remaining
self.current_progress['it_per_sec'] = float(it_per_sec)
if grad_step:
self.current_progress['grad_step'] = int(grad_step)
if loss and float(loss) > 0:
self.current_progress['loss'] = float(loss)
return
# Validation or Testing progress - consolidated since they use same tqdm format
valid_or_test_match = re.search(self.progress_patterns['valid_or_test'], line)
if valid_or_test_match:
percentage, current, total, elapsed, remaining, it_per_sec = valid_or_test_match.groups()
# Determine stage based on current context and line content
# If line contains 'Test' or we've already detected test phase, set to 'Testing'
if 'Test' in line or self.current_progress.get('stage') == 'Testing' or self.parsing_test_results:
self.current_progress['stage'] = 'Testing'
else:
self.current_progress['stage'] = 'Validation'
self.current_progress['current'] = int(current)
self.current_progress['total'] = int(total)
self.current_progress['progress_detail'] = f"{current}/{total}[{elapsed}<{remaining},{it_per_sec}it/s]"
self.current_progress['elapsed_time'] = elapsed
self.current_progress['remaining_time'] = remaining
self.current_progress['it_per_sec'] = float(it_per_sec)
return
# Parse training loss
train_match = re.search(self.patterns['train'], line)
if train_match:
epoch, loss = train_match.groups()
current_epoch = int(epoch)
self.current_progress['epoch'] = current_epoch
self.current_progress['loss'] = float(loss)
self.current_epoch = current_epoch
# Add new epoch to epochs list
if current_epoch not in self.epochs:
self.epochs.append(current_epoch)
self.train_losses.append(float(loss))
else:
# Update existing epoch
idx = self.epochs.index(current_epoch)
self.train_losses[idx] = float(loss)
return
# Parse validation loss
val_match = re.search(self.patterns['val'], line)
if val_match:
epoch, loss = val_match.groups()
current_epoch = int(epoch)
# Ensure current epoch exists
if current_epoch not in self.epochs:
self.epochs.append(current_epoch)
if len(self.train_losses) < len(self.epochs):
self.train_losses.append(None)
idx = self.epochs.index(current_epoch)
# Ensure val_losses list matches epochs list length
while len(self.val_losses) < len(self.epochs):
self.val_losses.append(None)
# Update val_losses at correct position
self.val_losses[idx] = float(loss)
# Also update val_metrics dictionary
if 'loss' not in self.val_metrics:
self.val_metrics['loss'] = []
# Ensure val_metrics['loss'] matches epochs length
while len(self.val_metrics['loss']) < len(self.epochs):
self.val_metrics['loss'].append(None)
# Update val_metrics['loss'] at correct position
self.val_metrics['loss'][idx] = float(loss)
return
# Parse validation metrics
val_metric_match = re.search(self.patterns['val_metric'], line)
if val_metric_match:
epoch, metric_name, metric_value = val_metric_match.groups()
current_epoch = int(epoch)
metric_name = metric_name.strip().lower()
# Handle different possible metrics
if metric_name == 'accuracy' or metric_name == 'acc':
self.current_progress['val_accuracy'] = float(metric_value)
# Ensure current epoch exists
if current_epoch not in self.epochs:
self.epochs.append(current_epoch)
if len(self.train_losses) < len(self.epochs):
self.train_losses.append(None)
# Add to corresponding metric list
if metric_name not in self.val_metrics:
self.val_metrics[metric_name] = []
# Ensure list length matches epochs
while len(self.val_metrics[metric_name]) < len(self.epochs):
self.val_metrics[metric_name].append(None)
idx = self.epochs.index(current_epoch)
self.val_metrics[metric_name][idx] = float(metric_value)
return
# 首先检查原始行是否包含"Saving model with best val"
if "Saving model with best val" in line:
# 直接从原始行提取信息,避免依赖正则表达式
try:
# 尝试直接解析行内容
parts = line.split("Saving model with best val ")[1].split(": ")
if len(parts) == 2:
metric_name = parts[0].strip().lower()
metric_value = float(parts[1].strip())
# 更新Best Performance信息
self.current_progress['best_metric_name'] = metric_name
self.current_progress['best_metric_value'] = metric_value
self.current_progress['best_epoch'] = self.current_epoch
# 如果是accuracy指标,同时更新best_accuracy
if metric_name == 'accuracy':
self.current_progress['best_accuracy'] = metric_value
# 记录调试信息
print(f"Best model updated - Metric: {metric_name}, Value: {metric_value}, Epoch: {self.current_epoch}")
# 将最佳模型信息添加到消息队列,确保UI能够显示
best_model_msg = f"Best model saved at epoch {self.current_epoch} with {metric_name}: {metric_value:.4f}"
self.message_queue.put(best_model_msg)
return
except Exception as e:
print(f"Error parsing best model info: {e}, line: {line}")
# 如果直接解析失败,尝试使用正则表达式
# Match best model save info: e.g., "Saving model with best val accuracy: 0.9088"
best_save_match = re.search(self.patterns['best_save'], log_content)
if best_save_match:
metric_name, metric_value = best_save_match.groups()
metric_name = metric_name.strip().lower()
metric_value = float(metric_value)
# 更新Best Performance信息
self.current_progress['best_metric_name'] = metric_name
self.current_progress['best_metric_value'] = metric_value
self.current_progress['best_epoch'] = self.current_epoch
# 如果是accuracy指标,同时更新best_accuracy
if metric_name == 'accuracy':
self.current_progress['best_accuracy'] = metric_value
# 记录调试信息
print(f"Best model updated (regex) - Metric: {metric_name}, Value: {metric_value}, Epoch: {self.current_epoch}")
# 将最佳模型信息添加到消息队列,确保UI能够显示
best_model_msg = f"Best model saved at epoch {self.current_epoch} with {metric_name}: {metric_value:.4f}"
self.message_queue.put(best_model_msg)
return
# 检查进程是否已经结束
if self.process and self.process.poll() is not None:
self.is_training = False
self.current_progress['is_completed'] = True
print("Training process has completed. Setting is_completed flag.")
except Exception as e:
# 记录错误信息,同时也保存到输出行中
error_msg = f"Error parsing line: {str(e)}"
self.error_message = error_msg
if 'lines' not in self.current_progress:
self.current_progress['lines'] = []
self.current_progress['lines'].append(error_msg)
if self.debug_progress:
print(error_msg)
print(f"Line content: {line}")
def _reset_tracking(self):
"""重置所有跟踪状态"""
# 重置指标跟踪
self.train_losses = []
self.val_losses = []
self.val_metrics = {}
self.epochs = []
self.current_epoch = 0
# 重置测试结果
self.test_results = {}
self.parsing_test_results = False
self.test_results_html = ""
# Force complete reset by creating a new dictionary instead of modifying existing one
# This ensures no old keys remain in the dictionary
self.current_progress = {
'stage': 'Waiting',
'progress': '',
'epoch': 0,
'current': 0,
'total': 0, # Set to 0 initially to avoid showing progress
'total_epochs': 0,
'val_accuracy': 0.0,
'best_accuracy': 0.0,
'best_epoch': -1, # Set to -1 to indicate no best model
'best_metric_name': '',
'best_metric_value': 0.0,
'progress_detail': '',
'elapsed_time': '',
'remaining_time': '',
'it_per_sec': 0.0,
'grad_step': 0,
'loss': 0.0,
'test_metrics': {},
'test_progress': 0.0,
'test_results_html': '',
'lines': [] # 添加lines字段来存储输出行
}
# 重置统计信息
self.current_stats = {}
self.parsing_stats = False
self.current_model = None
self.skipped_first_separator = False
# 重置缓存的统计信息
self.last_stats = {}
# 重置错误信息
if hasattr(self, 'error_message'):
self.error_message = None
def get_stats(self) -> Dict:
"""Get collected statistics."""
# Save last retrieved statistics to avoid emptying queue every time
if not hasattr(self, 'last_stats'):
self.last_stats = {}
try:
# Check if there's new data in the queue
if not self.stats_queue.empty():
# Get the latest statistics data
while not self.stats_queue.empty():
stat = self.stats_queue.get_nowait()
self.last_stats.update(stat)
except queue.Empty:
pass
except Exception as e:
print(f"Error getting statistics data: {str(e)}")
return self.last_stats
def _reset_stats(self):
"""Reset statistics tracking."""
# Clear statistics queue
while not self.stats_queue.empty():
try:
self.stats_queue.get_nowait()
except queue.Empty:
break
# Reset current statistics with new dictionaries
self.current_stats = {}
self.parsing_stats = False
self.current_model = None
self.skipped_first_separator = False # Reset flag
# Reset cached statistics
self.last_stats = {}
# Reset stats property explicitly
self.stats = {}
# Reset training and validation metrics
self._reset_tracking()
# Reset progress info
self.current_progress = {
'stage': 'Waiting',
'progress': '',
'epoch': 0,
'current': 0,
'total': 100,
'total_epochs': 0, # Ensure total_epochs is reset
'val_accuracy': 0.0,
'best_accuracy': 0.0,
'best_epoch': 0,
'best_metric_name': 'accuracy',
'best_metric_value': 0.0,
'progress_detail': '',
'elapsed_time': '',
'remaining_time': '',
'it_per_sec': 0.0,
'grad_step': 0,
'loss': 0.0,
'test_metrics': {},
'test_progress': 0.0,
'test_results_html': '',
'lines': [] # 添加lines字段来存储输出行
}
def _update_test_results_display(self):
"""Update the display of test results, in both HTML and text formats."""
if not self.test_results:
return
# Count number of metrics
metrics_count = len(self.test_results)
# Create a more beautiful HTML table with summary information
html_content = f"""
<div style="max-width: 800px; margin: 0 auto; font-family: Arial, sans-serif;">
<h3 style="text-align: center; margin-bottom: 15px; color: #333;">Test Results</h3>
<p style="text-align: center; margin-bottom: 15px; color: #666;">{metrics_count} metrics found</p>
<table style="width: 100%; border-collapse: collapse; font-size: 14px; border: 1px solid #ddd; box-shadow: 0 2px 3px rgba(0,0,0,0.1);">
<thead>
<tr style="background-color: #f0f0f0;">
<th style="padding: 12px; text-align: center; border: 1px solid #ddd; font-weight: bold; width: 50%;">Metric</th>
<th style="padding: 12px; text-align: center; border: 1px solid #ddd; font-weight: bold; width: 50%;">Value</th>
</tr>
</thead>
<tbody>
"""
# Sort by priority and alphabetically to ensure important metrics are displayed first
priority_metrics = ['loss', 'accuracy', 'f1', 'precision', 'recall', 'auroc', 'mcc']
# Build priority sorting key
def get_priority(item):
name = item[0]
if name in priority_metrics:
return priority_metrics.index(name)
return len(priority_metrics)
# Sort by priority
sorted_metrics = sorted(self.test_results.items(), key=get_priority)
# Add a row for each metric, using alternating row colors
for i, (metric_name, metric_value) in enumerate(sorted_metrics):
row_style = 'background-color: #f9f9f9;' if i % 2 == 0 else ''
# Use bold for priority metrics
is_priority = metric_name in priority_metrics
name_style = 'font-weight: bold;' if is_priority else ''
# 转换指标名称:缩写用大写,非缩写首字母大写
display_name = metric_name
if metric_name.lower() in ['f1', 'mcc', 'auroc']:
display_name = metric_name.upper()
else:
display_name = metric_name.capitalize()
html_content += f"""
<tr style="{row_style}">
<td style="padding: 10px; text-align: center; border: 1px solid #ddd; {name_style}">{display_name}</td>
<td style="padding: 10px; text-align: center; border: 1px solid #ddd;">{metric_value:.4f}</td>
</tr>
"""
html_content += """
</tbody>
</table>
<p style="text-align: center; margin-top: 10px; color: #888; font-size: 12px;">Test completed at: """ + time.strftime("%Y-%m-%d %H:%M:%S") + """</p>
</div>
"""
# Save to current_progress for UI access
self.current_progress['test_metrics'] = self.test_results.copy()
self.current_progress['test_results_html'] = html_content
# Generate text representation for logging
text_results = "\nTest Results:\n" + "-" * 30 + "\n"
# Display in same order as HTML
for metric_name, metric_value in sorted_metrics:
# 转换指标名称:缩写用大写,非缩写首字母大写
display_name = metric_name
if metric_name.lower() in ['f1', 'mcc', 'auroc']:
display_name = metric_name.upper()
else:
display_name = metric_name.capitalize()
text_results += f"{display_name.ljust(15)}: {metric_value:.4f}\n"
text_results += "-" * 30
text_results += f"\nTotal {metrics_count} metrics"
# Add text results to message queue
self.message_queue.put(text_results)
# Generate CSV content for download
csv_content = "Metric,Value\n"
for metric_name, metric_value in sorted_metrics:
# 转换指标名称:缩写用大写,非缩写首字母大写
display_name = metric_name
if metric_name.lower() in ['f1', 'mcc', 'auroc']:
display_name = metric_name.upper()
else:
display_name = metric_name.capitalize()
csv_content += f"{display_name},{metric_value:.6f}\n"
self.current_progress['test_results_csv'] = csv_content
def _process_test_progress(self, line: str):
"""Process test progress from output lines during testing phase."""
# Parse intermediate test results if available
test_metric_interim_match = re.search(r'Batch (\d+)/(\d+): ([a-zA-Z_\-]+) = ([\d.]+)', line)
if test_metric_interim_match:
batch, total_batches, metric_name, metric_value = test_metric_interim_match.groups()
progress = int(batch) / int(total_batches) * 100
self.current_progress['test_progress'] = progress
# Update test metrics with interim values
if 'interim_metrics' not in self.current_progress:
self.current_progress['interim_metrics'] = {}
self.current_progress['interim_metrics'][metric_name] = float(metric_value)
return True
return False
def check_process_status(self):
"""Check if the training process has completed."""
if self.process and self.process.poll() is not None:
self.is_training = False
# Check for normal vs error termination based on return code
if self.process.returncode == 0:
# Normal termination
self.current_progress['is_completed'] = True
print("Training process has completed successfully. Setting is_completed flag.")
else:
# Error termination - ensure UI doesn't show "completed"
self.current_progress['is_completed'] = False
# Explicitly mark the stage as Error for proper UI handling
self.current_progress['stage'] = 'Error'
# Log the error more prominently
print(f"Training process terminated with error code {self.process.returncode}. Setting stage to 'Error'.")
# Clear the process reference
self.process = None
return True
return False |